pp 1–12 | Cite as

Porous carbon-coated LiFePO4 nanocrystals prepared by in situ plasma-assisted pyrolysis as superior cathode materials for lithium ion batteries

  • Xiaoning Tian
  • Weiheng Chen
  • Zhongqing JiangEmail author
  • Zhong-Jie Jiang
Original Paper


The porous carbon-coated LiFePO4 (LFP) nanocrystals synthesized by in situ plasma-assisted pyrolysis are reported. The particle size of LFP nanoparticles is well controlled through the coating of polyaniline (PANI) on FePO4. The effect of PANI content in FePO4/PANI on the morphology and electrochemical performance of LiFePO4 particles is extensively investigated. Results show that the optimized amount of PANI in FePO4/PANI is 10.16% and the corresponding carbon content in activated porous carbon-coated LiFePO4 (LFP/AC-P4) is 9.27%. The primary particle size of LFP/AC-P4 is 20~50 nm which are wrapped and connected homogeneously and loosely by activated porous carbon. The LFP/AC-P4 composite delivers a capacity of 166.9 mAh g−1 at 0.2 C, which is much higher than carbon-encapsulated LiFePO4 nanocomposite (LFP/C) synthesized without the assistance of plasma pyrolysis (163.5 mAh g−1). Even at high rate of 5 C, a specific capacity of 128.4 mAh g−1 is achievable with no obvious capacity fading after 250 cycles.


In situ plasma assisted pyrolysis Porous carbon LiFePO4 Excellent rate capability Superior cyclic stability 


Funding information

Authors acknowledge the supports from the Chinese National Natural Science Foundation (No. 11105078), the Guangdong Provincial Natural Science Foundation (No. 2017A030313092), the Science Foundation of Zhejiang Sci-Tech University (No. 18062245-Y), the “Outstanding Talent and Team Plans Program” and “the Fundamental research funds for the central university” of South China University of Technology (No. 2018ZD25).

Supplementary material

11581_2019_3422_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 13 kb)
11581_2019_3422_MOESM2_ESM.pdf (970 kb)
ESM 2 (PDF 969 kb)


  1. 1.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRefGoogle Scholar
  2. 2.
    Liang Y, Wen K, Mao Y, Liu Z, Zhu G, Yang F, He W (2015) Shape and size control of LiFePO4 for high-performance lithium-ion batteries. ChemElectroChem 2(9):1227–1237CrossRefGoogle Scholar
  3. 3.
    Li Y, Meyer S, Lim J, Lee SC, Gent WE, Marchesini S, Krishnan H, Tyliszczak T, Shapiro D, Kilcoyne AL, Chueh WC (2015) Effects of particle size, electronic connectivity, and incoherent nanoscale domains on the sequence of lithiation in LiFePO4 porous electrodes. Adv Mater 27(42):6591–6597PubMedCrossRefGoogle Scholar
  4. 4.
    Wang L, He X, Sun W, Wang J, Li Y, Fan S (2012) Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials. Nano Lett 12(11):5632–5636PubMedCrossRefGoogle Scholar
  5. 5.
    Zhu J, Yoo K, El-halees I, Kisailus D (2014) Solution deposition of thin carbon coatings on LiFePO4. ACS Appl Mater Interfaces 6(23):21550–21557PubMedCrossRefGoogle Scholar
  6. 6.
    Zhao D, Feng Y-l, Wang Y-g, Xia Y-y (2013) Electrochemical performance comparison of LiFePO4 supported by various carbon materials. Electrochim Acta 88:632–638CrossRefGoogle Scholar
  7. 7.
    Jiang Z, Jiang Z-j (2012) Effects of carbon content on the electrochemical performance of LiFePO4/C core/shell nanocomposites fabricated using FePO4/polyaniline as an iron source. J Alloys Compd 537:308–317Google Scholar
  8. 8.
    Wang G, Ma Z, Shao G, Kong L, Gao W (2015) Synthesis of LiFePO4@carbon nanotube core–shell nanowires with a high-energy efficient method for superior lithium ion battery cathodes. J Power Sources 291:209–214CrossRefGoogle Scholar
  9. 9.
    Lee B-S, Son S-B, Park K-M, Lee G, Oh KH, Lee S-H, Yu W-R (2012) Effect of pores in hollow carbon nanofibers on their negative electrode properties for a lithium rechargeable battery. ACS Appl Mater Interfaces 4(12):6702–6710PubMedCrossRefGoogle Scholar
  10. 10.
    Ji H, Zhang L, Pettes MT, Li H, Chen S, Shi L, Piner R, Ruoff RS (2012) Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. Nano Lett 12(5):2446–2451PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Wi S, Kim J, Park K, Lee S, Kang J, Kim KH, Nam S, Kim C, Park B (2016) Evaluation of graphene-wrapped LiFePO4 as novel cathode materials for Li-ion batteries. RSC Adv 6(107):105081–105086CrossRefGoogle Scholar
  12. 12.
    Zhou Y, Lu J, Deng C, Zhu H, Chen GZ, Zhang S, Tian X (2016) Nitrogen-doped graphene guided formation of monodisperse microspheres of LiFePO4 nanoplates as the positive electrode material of lithium-ion batteries. J Mater Chem A 4(31):12065–12072CrossRefGoogle Scholar
  13. 13.
    Wang Y, Wang Y, Hosono E, Wang K, Zhou H (2008) The design of a LiFePO4/carbon nanocomposite with a Core–Shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed 47(39):7461–7465CrossRefGoogle Scholar
  14. 14.
    Liu H, Miao C, Meng Y, Xu Q, Zhang X, Tang Z (2014) Effect of graphene nanosheets content on the morphology and electrochemical performance of LiFePO4 particles in lithium ion batteries. Electrochim Acta 135:311–318CrossRefGoogle Scholar
  15. 15.
    Wu G, Ran R, Zhao B, Sha Y, Su C, Zhou Y, Shao Z (2014) 3D amorphous carbon and graphene co-modified LiFePO4 composite derived from polyol process as electrode for high power lithium-ion batteries. J Energy Chem 23(3):363–375CrossRefGoogle Scholar
  16. 16.
    Yang J, Wang J, Wang D, Li X, Geng D, Liang G, Gauthier M, Li R, Sun X (2012) 3D porous LiFePO4/graphene hybrid cathodes with enhanced performance for Li-ion batteries. J Power Sources 208:340–344CrossRefGoogle Scholar
  17. 17.
    Wang B, Al Abdulla W, Wang D, Zhao G (2015) Three-dimensional porous LiFePO4 cathode material modified with nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ Sci 8(3):869–875CrossRefGoogle Scholar
  18. 18.
    Tao S, Huang W-F, Wu G-X, Zhu X-B, Wang X-B, Zhang M, Wang S-H, Chu W-S, Song L, Wu Z-Y (2014) Performance enhancement of Lithium-ion battery with LiFePO4@C/RGO hybrid electrode. Electrochim Acta 144:406–411CrossRefGoogle Scholar
  19. 19.
    Li J, Zhang L, Zhang L, Hao W, Wang H, Qu Q, Zheng H (2014) In-situ growth of graphene decorations for high-performance LiFePO4 cathode through solid-state reaction. J Power Sources 249:311–319CrossRefGoogle Scholar
  20. 20.
    Mun J, Ha H-W, Choi W (2014) Nano LiFePO4 in reduced graphene oxide framework for efficient high-rate lithium storage. J Power Sources 251:386–392CrossRefGoogle Scholar
  21. 21.
    Zhu P, Yang Z, Zeng P, Zhong J, Yu J, Cai J (2015) Homogeneous precipitation synthesis and electrochemical performance of LiFePO4/CNTs/C composites as advanced cathode materials for lithium ion batteries. RSC Adv 5(130):107293–107298CrossRefGoogle Scholar
  22. 22.
    Liu Y, Gu J, Zhang J, Yu F, Wang J, Nie N, Li W (2015) LiFePO4 nanoparticles growth with preferential (010) face modulated by Tween-80. RSC Adv 5(13):9745–9751CrossRefGoogle Scholar
  23. 23.
    Tian X, Jiang Z, Jiang Y, Xu W, Li C, Luo L, Jiang Z-J (2016) Sulfonic acid-functionalized mesoporous carbon/silica as efficient catalyst for dehydration of fructose into 5-hydroxymethylfurfural. RSC Adv 6(103):101526–101534CrossRefGoogle Scholar
  24. 24.
    Tian X, Zhang LL, Bai P, Zhao XS (2011) Sulfonic-acid-functionalized porous benzene phenol polymer and carbon for catalytic esterification of methanol with acetic acid. Catal Today 166(1):53–59CrossRefGoogle Scholar
  25. 25.
    Liu Z, Zhao Z, Wang Y, Dou S, Yan D, Liu D, Xia Z, Wang S (2017) In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv Mater 29(18):1606207CrossRefGoogle Scholar
  26. 26.
    Tao L, Wang Q, Dou S, Ma Z, Huo J, Wang S, Dai L (2016) Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem Commun 52(13):2764–2767CrossRefGoogle Scholar
  27. 27.
    Tian Y, Ye Y, Wang X, Peng S, Wei Z, Zhang X, Liu W (2017) Three-dimensional N-doped, plasma-etched graphene: highly active metal-free catalyst for hydrogen evolution reaction. Appl Catal A Gen 529:127–133CrossRefGoogle Scholar
  28. 28.
    Du Y, Tang Y, Huang FQ, Chang C (2016) Preparation of three-dimensional free-standing nano-LiFePO4/graphene composite for high performance Lithium ion battery. RSC Adv 6:52279–52283CrossRefGoogle Scholar
  29. 29.
    Choi SH, Lee J-K, Kang YC (2015) Three-dimensional porous graphene-metal oxide composite microspheres: preparation and application in Li-ion batteries. Nano Res 8(5):1584–1594CrossRefGoogle Scholar
  30. 30.
    Kretschmer K, Sun B, Xie X, Chen S, Wang G (2016) A free-standing LiFePO4-carbon paper hybrid cathode for flexible lithium-ion batteries. Green Chem 18:2691–2698CrossRefGoogle Scholar
  31. 31.
    Dokko K, Shiraishi K, Kanamura K (2005) Identification of surface impurities on LiFePO4 particles prepared by a hydrothermal process. J Electrochem Soc 152(11):A2199–A2202CrossRefGoogle Scholar
  32. 32.
    Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Solid-State Lett 6(10):A207–A209CrossRefGoogle Scholar
  33. 33.
    Dhindsa KS, Mandal BP, Bazzi K, Lin MW, Nazri M, Nazri GA, Naik VM, Garg VK, Oliveira AC, Vaishnava P, Naik R, Zhou ZX (2013) Enhanced electrochemical performance of graphene modified LiFePO4 cathode material for lithium ion batteries. Solid State Ionics 253:94–100CrossRefGoogle Scholar
  34. 34.
    Zhu X, Hu J, Wu W, Zeng W, Dai H, Du Y, Liu Z, Li L, Ji H, Zhu Y (2014) LiFePO4/reduced graphene oxide hybrid cathode for lithium ion battery with outstanding rate performance. J Mater Chem A 2(21):7812–7818CrossRefGoogle Scholar
  35. 35.
    Guo X, Fan Q, Yu L, Liang J, Ji W, Peng L, Guo X, Ding W, Chen Y (2013) Sandwich-like LiFePO4/graphene hybrid nanosheets: in situ catalytic graphitization and their high-rate performance for lithium ion batteries. J Mater Chem A 1(38):11534–11538CrossRefGoogle Scholar
  36. 36.
    Wang B, Liu A, Abdulla WA, Wang D, Zhao XS (2015) Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage. Nanoscale 7(19):8819–8828PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Li W, Hwang J, Chang W, Setiadi H, Chung KY, Kim J (2016) Ultrathin and uniform carbon-layer-coated hierarchically porous LiFePO4 microspheres and their electrochemical performance. J Supercrit Fluid 116:164–171CrossRefGoogle Scholar
  38. 38.
    Zhang Y, Huang Y, Wang X, Guo Y, Jia D, Tang X (2016) Improved electrochemical performance of lithium iron phosphate in situ coated with hierarchical porous nitrogen-doped graphene-like membrane. J Power Sources 305:122–127CrossRefGoogle Scholar
  39. 39.
    Yang X, Tu J, Lei M, Zuo Z, Wu B, Zhou H (2016) Selection of carbon sources for enhancing 3D conductivity in the secondary structure of LiFePO4/C cathode. Electrochim Acta 193:206–215CrossRefGoogle Scholar
  40. 40.
    Pratheeksha PM, Mohan EH, Sarada BV, Ramakrishna M, Hembram K, Srinivas PV, Daniel PJ, Rao TN, Anandan S (2016) Development of a novel carbon-coating strategy for producing core-shell structured carbon coated LiFePO4 for an improved Li-ion battery performance. Phys Chem Chem Phys 19(1):175–188PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Liu Y, Gu J, Zhang J, Yu F, Dong L, Nie N, Li W (2016) Metal organic frameworks derived porous lithium iron phosphate with continuous nitrogen-doped carbon networks for lithium ion batteries. J Power Sources 304:42–50CrossRefGoogle Scholar
  42. 42.
    Oh J, Lee J, Hwang T, Kim JM, Seoung K, Piao Y (2017) Dual layer coating strategy utilizing N-doped carbon and reduced graphene oxide for high-performance LiFePO4 cathode material. Electrochim Acta 231:85–93CrossRefGoogle Scholar
  43. 43.
    Cao Z, Zhu G, Zhang R, Chen S, Sang M, Jia J, Yang M, Li X, Yang S (2018) Biological phytic acid guided formation of monodisperse large-sized carbon@LiFePO4/graphene composite microspheres for high-performance lithium-ion battery cathodes. Chem Eng J 351:382–390CrossRefGoogle Scholar
  44. 44.
    Ma H, Xiang J, Xia X (2018) Graphene foam supported LiFePO4 nanosheets composite as advanced cathode for lithium ion batteries. Mater Res Bull 101:205–209CrossRefGoogle Scholar
  45. 45.
    Guzmán G, Vazquez-Arenas J, Ramos-Sánchez G, Bautista-Ramírez M, González I (2017) Improved performance of LiFePO4 cathode for Li-ion batteries through percolation studies. Electrochim Acta 247:451–459CrossRefGoogle Scholar
  46. 46.
    Fischer MG, Hua X, Wilts BD, Castillo-Martinez E, Steiner U (2018) Polymer-templated LiFePO4/C nanonetworks as high-performance cathode materials for lithium-ion batteries. ACS Appl Mater Interfaces 10(2):1646–1653PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Du G, Zhou Y, Tian X, Wu G, Xi Y, Zhao S (2018) High-performance 3D directional porous LiFePO4/C materials synthesized by freeze casting. Appl Surf Sci 453:493–501CrossRefGoogle Scholar
  48. 48.
    Jing P, Yao L, Xiang M, Wang Y, Wu J, Wang B, Zhang Y, Wu H, Liu H (2018) Facile synthesis of bowl-like LiFePO4/C composite with high rate-performance. J Electron Mater 47(7):3543–3551CrossRefGoogle Scholar
  49. 49.
    Rosaiah P, Zhu J, Hussain OM, Liu Z, Qiu Y (2018) Well-dispersed rod-like LiFePO4 nanoparticles on reduced graphene oxide with excellent electrochemical performance for Li-ion batteries. J Electroanal Chem 811:1–7CrossRefGoogle Scholar
  50. 50.
    Wang Q, Peng D, Chen Y, Xia X, Liu H, He Y, Ma Q (2018) A facile surfactant-assisted self-assembly of LiFePO4/graphene composites with improved rate performance for lithium ion batteries. J Electroanal Chem 818:68–75CrossRefGoogle Scholar
  51. 51.
    Yang J, Li Z, Guang T, Hu M, Cheng R, Wang R, Shi C, Chen J, Hou P, Zhu K, Wang X (2018) Green synthesis of high-performance LiFePO4 nanocrystals in pure water. Green Chem 20(22):5215–5223CrossRefGoogle Scholar
  52. 52.
    Takeuchi T, Tabuchi M, Nakashima A, Nakamura T, Miwa Y, Kageyama H, Tatsumi K (2005) Preparation of dense LiFePO4/C composite positive electrodes using spark-plasma-sintering process. J Power Sources 146(1):575–579CrossRefGoogle Scholar
  53. 53.
    Jiang Z, Zhang B, Shen Q, Jiang Z-J (2019) In-situ plasma assisted formation of graphitic nanosheet supported N-doped carbon-coated antisite defectless LiFePO4 as a high-performance cathode material for lithium-ion batteries. J Alloys Compd 806:864–873CrossRefGoogle Scholar
  54. 54.
    Wu SX, Chiang CL, Wang CC, Chen CY (2018) Functionalization of MWCNTs by plasma treatment and use as conductive additives for LiFePO4 electrode. J Taiwan Inst Chem Eng 89:208–214CrossRefGoogle Scholar
  55. 55.
    Gao C, Zhou J, Liu G, Wang L (2018) Lithium-ions diffusion kinetic in LiFePO4/carbon nanoparticles synthesized by microwave plasma chemical vapor deposition for lithium-ion batteries. Appl Surf Sci 433:35–44CrossRefGoogle Scholar
  56. 56.
    Wang B, Xu B, Liu T, Liu P, Guo C, Wang S, Wang Q, Xiong Z, Wang D, Zhao XS (2014) Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries. Nanoscale 6(2):986–995PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Ni H, Liu J, Fan L-Z (2013) Carbon-coated LiFePO4–porous carbon composites as cathode materials for lithium ion batteries. Nanoscale 5(5):2164–2168PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Zhang Y, Wang W, Li P, Fu Y, Ma X (2012) A simple solvothermal route to synthesize graphene-modified LiFePO4 cathode for high power lithium ion batteries. J Power Sources 210(4):47–53CrossRefGoogle Scholar
  59. 59.
    Sun L, Deng Q, Fang B, Li Y, Deng L, Yang B, Ren X, Zhang P (2016) Carbon-coated LiFePO4 synthesized by a simple solvothermal method. CrystEngComm 18(39):7537–7543CrossRefGoogle Scholar
  60. 60.
    Long Y, Shu Y, Ma X, Ye M (2014) In-situ synthesizing superior high-rate LiFePO4/C nanorods embedded in graphene matrix. Electrochim Acta 117(4):105–112CrossRefGoogle Scholar
  61. 61.
    Su C, Bu X, Xu L, Liu J, Zhang C (2012) A novel LiFePO4/graphene/carbon composite as a performance-improved cathode material for lithium-ion batteries. Electrochim Acta 64(1):190–195CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Xiaoning Tian
    • 1
  • Weiheng Chen
    • 1
  • Zhongqing Jiang
    • 2
    Email author
  • Zhong-Jie Jiang
    • 3
    • 4
  1. 1.Department of Materials and Chemical EngineeringNingbo University of TechnologyNingboPeople’s Republic of China
  2. 2.Department of Physics, Key Laboratory of Optical Field Manipulation of Zhejiang ProvinceZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China
  3. 3.Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, School of Environment and EnergySouth China University of TechnologyGuangzhouPeople’s Republic of China
  4. 4.Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and EnergySouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations