Advertisement

Ionics

pp 1–9 | Cite as

Precast solid electrolyte interface film on Li metal anode toward longer cycling life

  • Fei Chen
  • Bo WangEmail author
  • Fei Wang
  • Yunpeng Jiang
  • Bengang Dong
  • Haimi Zhao
  • Dianlong WangEmail author
Original Paper
  • 39 Downloads

Abstract

In this paper, a precast solid electrolyte interface (SEI) film strategy was explored for Li metal anode with longer cycling life. At the current density of 0.5 mA cm−2 for 0.5 mAh cm−2 of Li, electrochemical performance tests showed that the half cell with optimized precast SEI film had a coulombic efficiency of more than 99.0% after 620 cycles. Cyclic voltammetry, electrochemical impedance spectrum, mechanical properties, ionic conductivity, scanning electron microscopy, infrared spectroscopy, thermogravimetry, etc., were used to analyze the performance of SEI film. The results showed that when 0.04 mol of lithium bis(oxalato)borate was added into 7.0 g of the poly(vinylidene fluoride-co-hexafluoropropylene) matrix as the components of SEI film, the half cell with the precast SEI film showed the best cycling performance. When different kinds of lithium salts were added into the matrix, the morphology and property after curing were different, which affected the tensile strength, elongation, ionic conductivity, electrolyte absorption rate, and thermal decomposition temperature. Moreover, it had also been found that the strength and ionic conductivity were the main factors in determining the performance of the precast SEI film.

Graphical abstract

A precast solid electrolyte interface (SEI) film strategy was explored for Li metal anode with longer cycling life.

Keywords

Li metal anode SEI film Cycling life PVDF-HFP LiBOB 

Notes

Funding information

We thank the National Natural Science Foundation of China (Nos. 51604089 and 51874110), Natural Science Foundation of Heilongjiang Province (No. JJ20180042), China Postdoctoral Science Foundation (Nos. 2016M601431 and 2018T110308), and Heilongjiang Provincial Postdoctoral Science Foundation (Nos. LBH-Z16056 and LBH-TZ1707) for the financial support.

References

  1. 1.
    Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries: a look into the future. Energy Environ Sci 4:3287–3295CrossRefGoogle Scholar
  2. 2.
    Cowin PI, Petit CTG, Lan R, Irvine JTS, Tao SW (2011) Recent progress in the development of anode materials for solid oxide fuel cells. Adv Energy Mater 1:314–332CrossRefGoogle Scholar
  3. 3.
    Cabana J, Monconduit L, Larcher D, Palacin MR (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22:E170–E192PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of Li metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148:405–416CrossRefGoogle Scholar
  5. 5.
    Wang B, Ruan TT, Chen Y, Jin F, Peng L, Zhou Y, Wang DL, Dou SX (2020) Graphene-based composites for electrochemical energy storage. Energy Storage Mater 24:22–51CrossRefGoogle Scholar
  6. 6.
    Wang F, Wang B, Ruan TT, Gao TT, Song RS, Jin F, Zhou Y, Wang DL, Liu HK, Dou SX (2019) Construction of structure-tunable Si@void@C anode materials for lithium-ion batteries through controlling the growth kinetics of resin. ACS Nano 13:12219–12229PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29CrossRefGoogle Scholar
  8. 8.
    Ji X, Nazar LF (2010) Advances in Li-S batteries. J Med Chem 20:9821–9826Google Scholar
  9. 9.
    Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42CrossRefGoogle Scholar
  10. 10.
    Scrosati B, Croce F, Panero S (2001) Progress in lithium polymer battery R&D. J Power Sources 100:93–100CrossRefGoogle Scholar
  11. 11.
    Aurbach D (2000) Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J Power Sources 89:206–218CrossRefGoogle Scholar
  12. 12.
    Aurbach D, Markovsky B, Levi MD, Levi E, Schechter A, Moshkovlch M, Cohen Y (1999) New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J Power Sources 82:95–111CrossRefGoogle Scholar
  13. 13.
    Kanamura K, Takezawa H, Shiraishi S, Takehara Z (1997) Chemical reaction of lithium surface during immersion in LiClO4 or LiPF6/DEC electrolyte. J Electrochem Soc 144:1900–1906CrossRefGoogle Scholar
  14. 14.
    Aurbach D, Cohen Y (1997) Morphological studies of Li deposition processes in LiAsF6/PC solutions by in situ atomic force microscopy. J Electrochem Soc 144:3355–3360CrossRefGoogle Scholar
  15. 15.
    Chung K, Kim W, Choi Y (2004) Lithium phosphorous oxynitride as a passive layer for anodes in lithium secondary batteries. J Electrochem Soc 566:263–267Google Scholar
  16. 16.
    Ota H, Wang X, Yasukawa E (2004) Characterization of lithium electrode in lithium imides/ethylene carbonate, and cyclic ether electrolytes: I. Surface morphology and lithium cycling efficiency. J Electrochem Soc 151:A427–A436CrossRefGoogle Scholar
  17. 17.
    Aurbach D, Zinigrad E, Teller H, Dan P (2000) Factors which limit the cycle life of rechargeable lithium (metal) batteries. J Electrochem Soc 147:1274–1279CrossRefGoogle Scholar
  18. 18.
    Bieker G, Winter M, Bieker P (2015) Electrochemical in situ investigations of SEI and dendrite formation on the Li metal anode. Phys Chem Chem Phys 17:8670–8679PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Chandrashekar S, Trease MN, Chang HJ, Du LS, Grey CP, Jerschow A (2012) 7Li MRI of Li batteries reveals location of microstructural lithium. Nat Mater 11:311–315PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Brissot C, Rosso M, Chazalviel JN, Lascaud S (1999) Dendritic growth mechanisms in lithium/polymer cells. J Power Sources 81:925–929CrossRefGoogle Scholar
  21. 21.
    Lang JL, Qi LH, Luo YZ, Wu H (2017) High performance Li metal anode: progress and prospects. Energy Storage Materials 7:115–129CrossRefGoogle Scholar
  22. 22.
    Chazalviel J (1990) Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A 42:7355–7367PubMedCrossRefGoogle Scholar
  23. 23.
    Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 9:2419–2430CrossRefGoogle Scholar
  24. 24.
    Liu YY, Lin DC, Li YZ, Chen GX, Pei A, Nix O, Li YB, Cui Y (2018) Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat Commun 9:3656PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Yan C, Yao YX, Chen X, Cheng XB, Zhang XQ, Huang JQ, Zhang Q (2018) Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew Chem Int Ed 57:14055–14059CrossRefGoogle Scholar
  26. 26.
    Guo JC, Xu YH, Wang CS (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett 10:4288–4294CrossRefGoogle Scholar
  27. 27.
    Yang Y, Yu G, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao Z, Cui Y (2011) Improving the performance of lithium-sulfur batteries by conductive polymer coating. ACS Nano 11:9187–9193CrossRefGoogle Scholar
  28. 28.
    Lee JS, Sun TK, Cao R, Choi NS, Liu M, Lee KT, Cho J (2011) Metal-air batteries: metal-air batteries with high energy density: Li-air versus Zn-air. Adv Mater 1:34–50Google Scholar
  29. 29.
    Li NW, Yin YX, Yang CP, Guo YG (2016) An artificial solid electrolyte interphase layer for stable Li metal anodes. Adv Mater 28:1853–1858PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Xu R, Zhang XQ, Cheng XB, Peng HJ, Zhao CZ, Yan C, Huang JQ (2018) Artificial soft–rigid protective layer for dendrite-free lithium metal anode. Adv Funct Mater 28:1705838CrossRefGoogle Scholar
  31. 31.
    Kong LL, Zhang Z, Zhang YZ, Liu S, Li GR, Gao XP (2016) Porous carbon paper as interlayer to stabilize the lithium anode for lithium-sulfur battery. ACS Appl Mater Interfaces 8:31684–31694PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Zhao CZ, Zhang XQ, Cheng XB, Zhang R, Xu R, Chen PY, Peng HJ, Huang JQ, Zhang Q (2017) An anion-immobilized composite electrolyte for dendrite-free Li metal anodes. Proc Natl Acad Sci 114:11069–11074PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Xu R, Xiao Y, Zhang R, Cheng XB, Zhao CZ, Zhang XQ, Yan C, Zhang Q, Huang JQ (2019) Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries. Adv Mater 31:1808392CrossRefGoogle Scholar
  34. 34.
    Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao HB, Wang HT, Li WY, Chu S, Cui Y (2014) Interconnected hollow carbon nanospheres for stable Li metal anodes. Nat Nanotechnol 9:618–623PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Yan K, Lee HW, Gao T, Zheng G, Yao H, Wang HT, Lu ZD, Zhou Y, Liang Z, Liu ZF, Chu S, Cui Y (2014) Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of Li metal anode. Nano Lett 14:6016–6022PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Song SR, Ge YQ, Wang B, Lv Q, Wang F, Ruan TT, Wang DL, Dou SX, Liu HK (2019) A new reflowing strategy based on lithiophilic substrates towards smooth and stable lithium metal anodes. J Mater Chem A 7:18126–18134CrossRefGoogle Scholar
  37. 37.
    Yi TF, Peng PP, Han X, Zhu YR, Luo SH (2019) Interconnected Co3O4@CoNiO2@PPy nanorod and nanosheet composite grown on nickel foam as binder-free electrodes for Li-ion batteries. Solid State Ionics 329:131–139CrossRefGoogle Scholar
  38. 38.
    Song R, Wang B, Xie Y, Ruan T, Wang F, Yuan Y, Wang DL, Dou SX (2018) A 3D conductive scaffold with lithiophilic modification for stable Li metal batteries. J Mater Chem A 6:17967–17976CrossRefGoogle Scholar
  39. 39.
    Ye H, Xin S, Yin YX, Li JY, Guo YG, Wan LJ (2017) Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. J Am Chem Soc 139:5916–5922PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Cai KD, Xiao Y, Lang XS, Tong YJ, He TS, Mao ZM, Wang C (2017) Porous anode of lithium-oxygen battery based on double-gas-path structure. Int J Hydrog Energy 42:29944–29948CrossRefGoogle Scholar
  41. 41.
    Lang XS, Ge F, Cai KD, Li L, Wang QS, Zhang QG (2019) A novel Mn3O4/MnO nano spherical transition metal compound prepared by vacuum direct current arc method as bi-functional catalyst for lithium-oxygen battery with excellent electrochemical performances. J Alloys Compd 770:451–457CrossRefGoogle Scholar
  42. 42.
    Yi TF, Peng PP, Fang ZK, Zhu YR, Xie Y, Luo SH (2019) Carbon-coated LiMn1-xFexPO4 (0≤x≤0.5) nanocomposites as high-performance cathode materials for Li-ion battery. Composites Part B 175:107067CrossRefGoogle Scholar
  43. 43.
    Yi TF, Zhu YR, Tao W, Luo SH, Xie Y, Li XF (2018) Recent advances in the research of MLi2Ti6O14 (M = 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. J Power Sources 399:26–41CrossRefGoogle Scholar
  44. 44.
    Yamaki J, Tobishima S, Hayashi K, Keiichi S, Nemoto Y, Arakawa M (1998) A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J Power Sources 74:219–227CrossRefGoogle Scholar
  45. 45.
    Zheng GY, Wang C, Pei A, Lopez J, Shi FF, Chen Z, Sendek AD, Lee HW, Lu Z, Schneider H, Safont-Sempere MM, Chu S, Bao ZN, Cui Y (2016) High-performance Li metal negative electrode with a soft and flowable polymer coating. ACS Energy Letters 1:1247–1255CrossRefGoogle Scholar
  46. 46.
    Wang B, Liu TF, Liu AM, Liu GJ, Wang L, Gao TT, Wang DL, Zhao XS (2016) A hierarchical porous C@LiFePO4/carbon nanotubes microsphere composite for high-rate lithium-ion batteries: combined experimental and theoretical study. Adv Energy Mater 6:1600426CrossRefGoogle Scholar
  47. 47.
    Lou H, Wang B, Liu T, Jin F, Liu R, Xu CY, Wang CH, Ji KM, Zhou Y, Wang DL, Dou SX (2019) Hierarchical design of hollow Co-Ni LDH nanocages strung by MnO2 nanowire with enhanced pseudocapacitive properties. Energy Storage Materials 19:370–378CrossRefGoogle Scholar
  48. 48.
    Wang B, Xie Y, Liu T, Luo H, Wang B, Wang CH, Wang L, Wang DL, Dou SX, Zhou Y (2017) LiFePO4 quantum-dots composite synthesized by a general microreactor strategy for ultra-high-rate lithium ion batteries. Nano Energy 42:363–372CrossRefGoogle Scholar
  49. 49.
    Kang HR, Wang B, Song RS, Wang F, Luo H, Ruan TT, Wang DL (2019) A stable protective layer toward high-performance lithium metal battery. Ionics 25:4067–4074CrossRefGoogle Scholar
  50. 50.
    Li RP, Wang B, Gao TT, Bao CY, Song RS, Wang DL (2019) A LiA1Cl4·3SO2-NaAlCl4·2SO2 binary inorganic electrolyte with improved electrochemical performance for Li-metal batteries. Ionics 25:4751–4760CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.The Research Institute of Tianneng GroupChangxingChina
  3. 3.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations