pp 1–13 | Cite as

Synthesis of pH-moderated cobalt molybdate with bifunctional (photo catalyst and graphene-based supercapacitor) application

  • Biraj K. Satpathy
  • Rasmita Barik
  • Arun K. Padhy
  • Mamata MohapatraEmail author
Original Paper


The present manuscript deals with one photosynthesis of cobalt molybdate for multifunctional application as supercapacitor and photo catalyst. The cobalt molybdate is synthesized by various concentration of urea as precursor. Nanostructured transition metal has been synthesized by hydrothermal method from spent catalyst leach liquor. Different physico-chemical characterization techniques are obtained to illustrate the nanomaterials followed by X-ray diffraction, field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and nitrogen adsorption–desorption isotherm for surface area analysis. Nanorod cobalt molybdate is proved as efficient photocatalyst for Rhodamine B dye under visible light irradiation, which possess a high degradation rate of 98% after 15 min. Electrochemically active cobalt molybdate shows high specific capacitance value of maximum specific capacitance of 175.34 F g-1at three-electrode system and 74.2 F g−1at two-electrode system. It also revealed excellent rate capability and superior cycling stability with long cycle life (92.7% retention in specific capacitance after 5000 cycles) along with high energy and power densities.


Cobalt Molybdate Photo catalyst Supercapacitor Specific capacitance 



The authors are grateful to Prof. D. Pradhan, Materials Science Centre, Indian Institute of Technology Kharagpur, India, for his kind help to carryout electrochemical and impedance study. RB is thankful to DST Inspire Division (Govt. of India) for their financial support. The financial support provided by Ministry of Earth Scince, India through GAP-001 is acknowledged.

Author contributions

The experimental work was done by BKS and RB. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11581_2019_3339_MOESM1_ESM.pdf (217 kb)
ESM 1 (PDF 217 kb)


  1. 1.
    Ajamein H, Haghighi M, Shokrani R, Abdollahifar M (2016) On the solution combustion synthesis of copper based nanocatalysts for steam methanol reforming: Effect of precursor, ultrasound irradiation and urea/nitrate ratio. J Mol Catal A Chem 421:222–234. CrossRefGoogle Scholar
  2. 2.
    Ana de Moura AP, Larissa de Oliveira H, Pereira S, Paula F, Rosa V, Ieda L, Máximo SL, Longo E, Varela AJ (2012) Structural, optical, and magnetic properties of NiMoO4 nanorods prepared by microwave sintering. Adv Chem Eng Sci 2:465–473. CrossRefGoogle Scholar
  3. 3.
    Barik R, Devi N, Nandi D, Siwal S, Ghosh SK, Mallick K (2017) Multifunctional performance of nanocrystalline tin oxide. J Alloys Compd 723:201–207. CrossRefGoogle Scholar
  4. 4.
    Barmi MJ, Sundaram MM (2016) Role of polymeric surfactant in the synthesis of cobalt molybdate nanospheres for hybrid capacitor applications. RSC Adv 6:36152–36162. CrossRefGoogle Scholar
  5. 5.
    Baskar S, Meyrick D, Ramakrishnan K, Minakshi M (2014) Facile and large-scale combustion synthesis of α-CoMoO4: Mimics the redox behavior of a battery in aqueous hybrid device. Chem Eng J 253:502–507. CrossRefGoogle Scholar
  6. 6.
    Candler J, Elmore T, Gupta BK, Dong L, Palchoudhury S, Gupta RK (2015) New insight into high-temperature driven morphology reliant CoMoO4 flexible supercapacitors. New J Chem 39:6108–6116. CrossRefGoogle Scholar
  7. 7.
    Cao H, Xiao Y, Zhang S (2011) The synthesis and photocatalytic activity of ZnSe microspheres. Nanotechnology 22:015604 (8 pp. CrossRefPubMedGoogle Scholar
  8. 8.
    Cao J, Wang Y, Zhou Y, Ouyang JH, Jia D, Guo L (2013) High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. J Electroanal Chem 689:201–206. CrossRefGoogle Scholar
  9. 9.
    Carvalho LS, de Melo e Melo VR, Vitor Sobrinho E et al (2018) Effect of urea excess on the properties of the MgAl2O4 obtained by microwave-assisted combustion. Mater Res 21.
  10. 10.
    Cherian CT, Reddy MV, Haur SC, Chowdari BVR (2013) Interconnected network of CoMoO4 submicrometer particles as high capacity anode material for lithium ion batteries. ACS Appl. Mater. Interfaces, 5:918-923.doi. CrossRefGoogle Scholar
  11. 11.
    Dhanasekar M, Satyajit R, Rout CS, Bhat VS (2017) Efficient sono-photocatalytic degradation of methylene blue using nickel molybdate nanosheets under diffused sunlight. J Environ Chem Eng 5:2997–3004. CrossRefGoogle Scholar
  12. 12.
    Ding Y, Wan Y, Min YL, Zhang W, Yu SH (2008) General synthesis and phase control of metal molybdate hydrates MMoO4·nH2O (M = Co, Ni, Mn, n = 0, 3/4, 1) nano/microcrystals by a hydrothermal approach: magnetic, photocatalytic, and electrochemical properties. Inorg Chem 47:7813–7823. CrossRefPubMedGoogle Scholar
  13. 13.
    Guo D, Zhang H, Yu X, Zhang M, Zhang P, Li Q, Wang T (2013) Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors. J Mater Chem A 1:7247–7254. CrossRefGoogle Scholar
  14. 14.
    Hangloo V, Pandita S, Bamzai KK, Kotru PN, Sahni N (2003) Growth and characterization of pure Gd-heptamolybdate and mixed Gd-Ba-molybdate crystals, cryst. Growth Des 3:753–759. CrossRefGoogle Scholar
  15. 15.
    Hao Y, Dong X, Zhai S, Wang X, Ma H, Zhang X (2016) Controllable self-assembly of a novel Bi2MoO6-based hybrid photocatalyst: excellent photocatalytic activity under UV, visible and near-infrared irradiation. Chem Commun 52:6525–6528. CrossRefGoogle Scholar
  16. 16.
    Hao J, Wang X, Liu F, Han S, Lian J, Jiang Q (2017) Facile synthesis ZnS/ZnO/Ni(OH)2 composites grown on Ni foam: a bifunctional materials for photocatalysts and supercapacitors. Sci Rep 7:3021. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hu B, Kang X, Chen W, Yang F, Hu S (2011) Growth of molybdate nanorods through an intermediate sustained release process. CrystEngComm 13:1755–1758. CrossRefGoogle Scholar
  18. 18.
    Jinlong L, Meng Y, Suzuki K, Miura H (2017) Synthesis of CoMoO4@RGO nanocomposites as high-performance supercapacitor electrodes. Microporous Mesoporous Mater 242:264–270. CrossRefGoogle Scholar
  19. 19.
    Kianpour G, Salavati-Niasari M, Emadi H (2013) Precipitation synthesis and characterization of cobalt molybdates nanostructures. Superlattice Microst 58:120–129. CrossRefGoogle Scholar
  20. 20.
    Li M, Xu S, Cherry C, Zhu Y, Wu D, Zhang C, Zhang X, Huang R, Qi R, Wang L, Chu PK (2015) Hierarchical 3-dimensional CoMoO4 nanoflakes on a macroporous electrically conductive network with superior electrochemical performance. J Mater Chem A 3:13776–13785. CrossRefGoogle Scholar
  21. 21.
    Li W, Wang X, Hu Y, Sun L, Gao C, Zhang C, Liu H, Duan M (2018) Hydrothermal synthesized of CoMoO4microspheres as excellent electrode material for supercapacitor. Nanoscale Res Lett 13:120. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Liu M-C, Ma Kong X-J, Li X-M, Luo Y-C, Kang L (2012) Hydrothermal process for the fabrication of CoMoO4·0.9H2O nanorods with excellent electrochemical behavior. New J Chem 36:1713–1716. CrossRefGoogle Scholar
  23. 23.
    Long H, Liu T, Zeng W, Yang Y, Zhao S (2018) CoMoO4 nanosheets assembled 3D-frameworks for high-performance energy storage. Ceram Int 44, 2:2446–2452CrossRefGoogle Scholar
  24. 24.
    Mai LQ, Yang F, Zhao YL, Xu X, Xu L, Luo YZ (2011) Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 2:381. CrossRefPubMedGoogle Scholar
  25. 25.
    Minakshi M, Barmi MJ, Jones RT (2017) Rescaling metal molybdate nanostructures with biopolymer for energy storage having high capacitance with robust cycle stability. DaltonTrans. 46:3588–3600. CrossRefGoogle Scholar
  26. 26.
    Nayak AK, Lee S, Sohn Y, Pradhan D (2015) Biomolecule-assisted synthesis of In(OH)3 nano cubes and In2O3 nanoparticles: photocatalytic degradation of organic contaminants and CO oxidation. Nanotechnology 26:485601 (12 pp). CrossRefPubMedGoogle Scholar
  27. 27.
    Niu Z, Zhou W, Chen J, Feng G, Li H, Ma W, Li J, Dong H, Zhao D, Xie S (2011) Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ Sci 4:1440–1446. CrossRefGoogle Scholar
  28. 28.
    Owusu KA, Qu L, Li J, Wang Z, Zhao K, Yang C, Hercule KM, Lin C, Changwei S, Wei Q, Zhou L, Mai L (2017) Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat Commun 8:14264. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Park KS, Seo SD, Shim HW, Kim DW (2012) Electrochemical performance of NixCo1-x MoO4 (0≤ x≤ 1) nanowire anodes for lithium-ion batteries. Nanoscale Res Lett 7:35. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ratha S, Samantara AK, Singha KK, Gangan AS, Chakraborty B, Jena BK, Rout CS (2017) Urea-assisted room temperature stabilized metastable β-NiMoO4: experimental and theoretical insights into its unique bifunctional activity toward oxygen evolution and supercapacitor. ACS Appl Mater Interfaces 9:9640–9653. CrossRefPubMedGoogle Scholar
  31. 31.
    Rico JL, Ávalos-Borja M, Barrera A, Hargreaves JS (2013) Template-free synthesis of CoMoO4 rods and their characterization. J Mater Res Bull 48:4614–4617. CrossRefGoogle Scholar
  32. 32.
    Rodriguez A, Chaturvedi S, Hanson C, Brito L (2002) Reduction of CoMoO4 and NiMoO4: in situ time-resolved XRD studies. Catal Lett 82:103. CrossRefGoogle Scholar
  33. 33.
    Salinas-Torres D, Sieben JM, Lozano-Castelló D, Cazorla-Amorós D, Morallon E (2013) Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre–PANI electrodes. Electrochim Acta 89:326–333. CrossRefGoogle Scholar
  34. 34.
    Schmitt P, Brem N, Schunk S, Feldmann C (2011) Polyol-mediated synthesis and properties of nanoscale molybdates/tungstates: color, luminescence, catalysis. Adv Funct Mater 21:3037–3046. CrossRefGoogle Scholar
  35. 35.
    Shi H, Qi L, Ma J, Wu N (2005) Architectural control of hierarchical nanobelt superstructures in catanionic reverse micelles. Adv Funct Mater 15:442–450. CrossRefGoogle Scholar
  36. 36.
    Subramani K, Sudhan N, Divya R, Sathish M (2017) All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon. RSC Adv 7:6648–6659. CrossRefGoogle Scholar
  37. 37.
    Veerasubraman GK, Krishnamoorthy K, Kim SJ (2015) Electrochemical performance of an asymmetric supercapacitor based on graphene and cobalt molybdate electrodes. RSC Adv 5:16319–16327. CrossRefGoogle Scholar
  38. 38.
    Wang L, Peng B, Guo X, Ding W, Chen Y (2009) Ferric molybdate nanotubes synthesized based on the Kirkendall effect and their catalytic property for propene epoxidation by air. Chem Commun 2009:1565–1567. CrossRefGoogle Scholar
  39. 39.
    Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G (2014) Flexible energy storage devices: design consideration and recent progress. Adv Mater 26(28):4763–4782. CrossRefPubMedGoogle Scholar
  40. 40.
    Wang J, Zhang L, Liu X, Zhang X, Tian Y, Liu X, Zhao J, Li Y (2017) Assembly of flexible CoMoO4@ NiMoO4· xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors. Sci Rep 7:41088. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wiesmann M, Ehrenberg H, Wltschek G, Zinn P, Weitzel H, Fuess H (1995) Crystal and magnetic structure of α-NiMoO4. J Magn Magn Mater 150:371–376. CrossRefGoogle Scholar
  42. 42.
    Xu Z, Li Z, Tan X, Hol CM, Zhang L, Amirkhiz BS, Mitlin D (2012) Supercapacitive carbon nanotube-cobalt molybdate nanocomposites prepared via solvent-free microwave synthesis. RSC Adv 2:2753–2755. CrossRefGoogle Scholar
  43. 43.
    Xu X, Shen J, Li N, Ye M (2014) Microwave-assisted synthesis of graphene/CoMoO4 nanocomposites with enhanced supercapacitor performance. J Alloys Compd 616:58–65. CrossRefGoogle Scholar
  44. 44.
    Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816. CrossRefGoogle Scholar
  45. 45.
    Yang X, Meng N, Zhu Y, et al (2016) Greatly improved mechanical and thermal properties of chitosan by carboxyl-functionalized MoS2 nanosheets. J Mater Sci 51:1344–1353. CrossRefGoogle Scholar
  46. 46.
    Zhang Z, Liu Y, Huang Z, Ren L, Qi X, Wei X, Zhong J (2015) Facile hydrothermal synthesis of NiMoO4@ CoMoO4 hierarchical nanospheres for supercapacitor applications. Phys Chem Chem Phys 17:20795–20804. CrossRefPubMedGoogle Scholar
  47. 47.
    Zhao Y, Teng F, Liu Z, Du Q, Xu J, Teng Y (2016) Electrochemical performances of asymmetric super capacitor fabricated by one-dimensional CoMoO4 nanostructure. Chem Phys Lett 664:23–28. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Hydro & ElectrometallurgyCSIR-Institute of Minerals and Materials TechnologyBhubaneswarIndia
  2. 2.School of Nanoscience and TechnologyIndian Institute of TechnologyKharagpurIndia
  3. 3.Centre for Applied ChemistryCentral University of JharkhandRanchiIndia

Personalised recommendations