Advertisement

Ionics

pp 1–11 | Cite as

Electrochemical characterization of electrodialysis cation exchange membrane incorporated with graphite nanoparticle for deionization

  • S. M. HosseiniEmail author
  • M. Chehreh
  • E. Jashni
  • J. N. ShenEmail author
Original Paper
  • 11 Downloads

Abstract

In this study, nanocomposite polyvinyl chloride-based heterogeneous cation exchange membranes were fabricated by embedding graphite nanoparticles through solution casting technique. The effects of graphite nanoparticle concentrations in the membrane body on the electrochemical properties of blended membranes were investigated. FESEM and SOM images showed uniform distribution of particles and a uniform surface for the fabricated membranes. XRD patterns showed that the crystallinity of membrane enhanced by the increase of graphite nanoparticle dosage. The obtained results imply that increasing the concentration of graphite nanoparticles in the modified membranes has produced a rougher and a more hydrophobic surface. Membrane potential, transport number, selectivity, flux, and water content for the blended membranes were enhanced initially by increase of graphite nanoparticle concentration up to 2 wt% and after that downward trend found. The electrical resistance of the membranes was reduced by the use of graphite nanoparticles obviously.

Keywords

Cation exchange membrane Graphite nanoparticles Nanocomposite Promoted electrochemical properties Deionization 

Notes

Acknowledgments

The authors gratefully acknowledge Arak University for the financial support during this research.

References

  1. 1.
    Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275CrossRefGoogle Scholar
  2. 2.
    Karimi L, Ghassemi A, Zamani Sabzi H (2018) Quantitative studies of electrodialysis performance. Desalination 445:159–169CrossRefGoogle Scholar
  3. 3.
    Zhong S, Wu W, Wei B, Feng J, Liao S, Li X, Yu Y (2018) Influence of the ions distribution of anion-exchange membranes on electrodialysis. Desalination 437:34–44CrossRefGoogle Scholar
  4. 4.
    Malek P, Ortiz JM, Schulte-Herbrüggen HMA (2016) Decentralized desalination of brackish water using an electrodialysis system directly powered by wind energy. Desalination 377:54–64CrossRefGoogle Scholar
  5. 5.
    Allioux FM, He L, She F, Hodgson PD, Kong L, Dumée LF (2015) Investigation of hybrid ion-exchange membranes reinforced with non-woven metal meshes for electro-dialysis applications. Sep Purif Technol 147:353–363CrossRefGoogle Scholar
  6. 6.
    Xu T, Huang C (2008) Electrodialysis-based separation technologies: a critical review. AICHE J 54:3147–3159CrossRefGoogle Scholar
  7. 7.
    Strathmann H, Grabowski A, Eigenberger G (2013) Ion-exchange membranes in the chemical process industry. Ind Eng Chem Res 52:10364–10379CrossRefGoogle Scholar
  8. 8.
    Fan H, Yip NY (2018) Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes. J Membr Sci 573:668–681CrossRefGoogle Scholar
  9. 9.
    Hosseini SM, Jashni E, Habibi M, Van der Bruggen B (2018) Fabrication of novel electrodialysis heterogeneous ion exchange membranes by incorporating PANI/GO functionalized composite nanoplates. Ionics 24:1789–1801CrossRefGoogle Scholar
  10. 10.
    Hosseini SM, Hamidi AR, Moghadassi AR, Koranian P, Madaeni SS (2015) Fabrication of novel mixed matrix electrodialysis heterogeneous ion-exchange membranes modified by Ilmenite (FeTiO3): electrochemical and ionic transport characteristics. Ionics 21:437–447CrossRefGoogle Scholar
  11. 11.
    Hosseini SM, Rafiei N, Salabat A, Ahmadi A (2018) Fabrication of new type of barium ferrite/copper oxide composite nanoparticles blended polyvinylchloride based heterogeneous ion exchange membrane. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2018.06.001
  12. 12.
    Liu G, Jin W, Xu N (2015) Graphene-based membranes. Chem Soc Rev 44:5016–5030PubMedCrossRefGoogle Scholar
  13. 13.
    Yin J, Zhu G, Deng B (2013) Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment. Journal of Membrane Science 437:237–248CrossRefGoogle Scholar
  14. 14.
    Ong C, Goh P, Lau W, Misdan N, Ismail A (2016) Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: a review. Desalination 393:2–15CrossRefGoogle Scholar
  15. 15.
    Hebbar RS, Isloor AM, Asiri AM (2017) Carbon nanotube-and graphene-based advanced membrane materials for desalination. Environ Chem Lett 15:643–671CrossRefGoogle Scholar
  16. 16.
    Ganesh B, Isloor AM, Ismail AF (2013) Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination 313:199–207CrossRefGoogle Scholar
  17. 17.
    Mi B (2014) Graphene oxide membranes for ionic and molecular sieving. Science 343:740–742PubMedCrossRefGoogle Scholar
  18. 18.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191PubMedCrossRefGoogle Scholar
  19. 19.
    Liu B, Zhang D, Li X, Heb Z, Guo X, Liu Z, Guo Q (2018) Effect of graphite flakes particle sizes on the microstructure and properties of graphite flakes/copper composites. Alloys Compd 766:382–390CrossRefGoogle Scholar
  20. 20.
    Qui Çonero D, Frontera A, Garau C, Ballester P, Costa A, Deyà PM (2006) Interplay between cation– π, anion– π and π – π interactions. Angew Chem 7:2487–2491Google Scholar
  21. 21.
    Konicki W, Hełminiak A, Arabczyk W, Mijowska E (2018) Adsorption of cationic dyes onto Fe@graphite core-shell magnetic nanocomposite: equilibrium, kinetics and thermodynamics. Chem Eng Res Des 129:259–270CrossRefGoogle Scholar
  22. 22.
    Li X, Wang Z, Lu H, Zhao C, Na H, Zhao C (2005) Electrochemical properties of sulfonated PEEK used for ion exchange membranes. Journal of Membrane Science 254:147–155CrossRefGoogle Scholar
  23. 23.
    Hosseini SM, Jashni E, Habibi M, Nemati M, Van der Bruggen B (2017) Evaluating the ion transport characteristics of novel graphene oxide nanoplates entrapped mixed matrix cation exchange membranes in water deionization. J Membr Sci 541:641–652CrossRefGoogle Scholar
  24. 24.
    Mc Crum NG, Buckley CP, Bucknall CB (1997) Principles of Polymer Engineering, 2nd edition. Oxford University Press, EnglandGoogle Scholar
  25. 25.
    Tanaka Y (2007) Ion exchange membranes: fundamentals and applications, Membrane Science and Technology. Elsevier Science & TechnologyGoogle Scholar
  26. 26.
    Khan J, Tripathi BP, Saxena A, Shahi VK (2007) Electrochemical membrane reactor: in situ separation and recovery of chromic acid and metal ions. Electrochim Acta 52:6719–6727CrossRefGoogle Scholar
  27. 27.
    Hwanga GJ, Ohyab H, Nagai T (1999) Ion exchange membrane based on block copolymers. Part III: preparation of cation exchange membrane. J Membr Sci 156:61–65CrossRefGoogle Scholar
  28. 28.
    Nagarale RK, Shahi VK, Thampy SK, Rangarajan R (2004) Studies on electrochemical characterization of polycarbonate and polysulfone based heterogeneous cation exchange membranes. Reactive & Functional Polymer 61:131–138CrossRefGoogle Scholar
  29. 29.
    Barragaan VM, Bauza CR (1999) Membrane potentials and electrolyte permeation in a cation-exchange membrane. J Membr Sci 154:261–272CrossRefGoogle Scholar
  30. 30.
    Gohil GS, Binsu VV, Shahi VK (2006) Preparation and characterization of monovalent ion selective polypyrrole composite ion exchange membranes. J Membr Sci 280:210–218CrossRefGoogle Scholar
  31. 31.
    Hosseini SM, Sohrabnejad S, Nabiyouni G, Jashni E, Van der Bruggen B, Ahmadi A (2019) Magnetic cation exchange membrane incorporated with cobalt ferrite nanoparticles for chromium ions removal via electrodialysis. J Membr Sci 583:292–300CrossRefGoogle Scholar
  32. 32.
    Nagarale RK, Shahi VK, Rangarajan R (2005) Preparation of polyvinyl alcohol-silica hybrid heterogeneous anion-exchange membranes by sol-gel method and their characterization. J Membr Sci 248:37–44CrossRefGoogle Scholar
  33. 33.
    Nagarale RK, Gohil GS, Shahi VK (2006) Recent developments on ion-exchange membranes and electro-membrane processes. Adv Colloid Interf Sci 119:97–130CrossRefGoogle Scholar
  34. 34.
    Bermudez JM, Menendez JA, Arenillas A, Martínez-Palou R, Romero AA, Luque R (2015) Graphene oxide-catalysed oxidation reaction of unsaturated compounds under microwave irradiation. Catal Commun 72:133–137CrossRefGoogle Scholar
  35. 35.
    He G, Li Z, Zhao J, Wang S, Wu H, Guiver MD, Jiang Z (2015) Nanostructured ion-exchange membranes for fuel cells: recent advances and perspectives. Adv Mater 27:5280–5295PubMedCrossRefGoogle Scholar
  36. 36.
    Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–49CrossRefGoogle Scholar
  37. 37.
    Raghavender AT, Hong NH, Lee KJ, Jung MH, Skoko Z, Vasilevskiy M, Cerqueira MF, Samantilleke AP (2013) Nano-ilmenite FeTiO3: synthesis and characterization. J Magn Magn Mater 331:129–132CrossRefGoogle Scholar
  38. 38.
    Hosseini SM, Madaeni SS, Khodabakhshi AR (2010) Preparation and characterization of PC/SBR heterogeneous cation exchange membrane filled with carbon nano-tubes. Journal of Membrane Science 362:550–559CrossRefGoogle Scholar
  39. 39.
    Fujii T, Yamashita M, Fujimori S, Saitoh Y, Nakamura T, Kobayashi K, Takada J (2007) Large magnetic polarization of Ti4+ ions in FeTiO3. J Magn Magn Mater 310:e555–e557CrossRefGoogle Scholar
  40. 40.
    Kang MS, Choi YJ, Choi IJ, Yoon TH, Moon SH (2003) Electrochemical characterization of sulfonated poly (arylene ether sulphone) (S-PES) cation-exchange membranes. J Membr Sci 216:39–53CrossRefGoogle Scholar
  41. 41.
    Lucas X, Bauzá A, Frontera A, Quiñonero D (2016) A thorough anion–π interaction study in biomolecules: on the importance of cooperativity effects. Chem Sci 7:1038–1050PubMedCrossRefGoogle Scholar
  42. 42.
    Escalona-Villalpando RA, Gurrola MP, Trejo G, Guerra-Balcázar M, Ledesma García J, Arriag LG (2018) Electrodeposition of gold on oxidized and reduced graphite surfaces and its influence on glucose oxidation. J Electroanal Chem 816:92–98CrossRefGoogle Scholar
  43. 43.
    Hosseini SM, Jashni E, Jafari MR, Van der Bruggen B, Shahedi Z (2018) Nanocomposite polyvinyl chloride-based heterogeneous cation exchange membrane prepared by synthesized ZnQ2 nanoparticles: ionic behavior and morphological characterization. J Membr Sci 560:1–10CrossRefGoogle Scholar
  44. 44.
    Hosseini SM, Alibakhshi H, Khodabakhshi A, Nemati M (2018) Enhancing electrochemical performance of heterogeneous cation exchange membranes by using super activated carbon nanoparticles. J Pet Sci Technol 8(3):14–29Google Scholar
  45. 45.
    Klaysom C, Moon SH, Ladewig BP, Max Lu GQ, Wang L (2011) Preparation of porous ion-exchange membranes (IEMs) and their characterizations. J Membr Sci 371:37–44CrossRefGoogle Scholar
  46. 46.
    Hosseini SM, Rafiei S, Hamidi AR, Moghadassi AR, Madaeni SS (2014) Preparation and electrochemical characterization of mixed matrix heterogeneous cation exchange membranes filled with zeolite nanoparticles: ionic transport property in desalination. Desalination 351:138–144CrossRefGoogle Scholar
  47. 47.
    Hosseini SM, Nemati M, Jeddi F, Salehi E, Khodabakhshi AR, Madaeni SS (2015) Fabrication of mixed matrix heterogeneous cation exchange membrane modified by titanium dioxide nanoparticles: mono/bivalent ionic transport property in desalination. Desalination 359:167–175CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of Engineering,Arak UniversityArakIran
  2. 2.Center for Membrane Separation and Water Science & Technology, Ocean CollegeZhejiang University of TechnologyHangzhouChina

Personalised recommendations