pp 1–6 | Cite as

Ultrafine TiO2(B) nanowires for ultrahigh-rate lithium-ion batteries

  • Yan WangEmail author
  • Jing Zhang
Original Paper


We first report a facile hydrothermal and postheat treatment route for preparing TiO2(B) nanowires with ultrahigh surface area, up to 209.74 m2 g−1. Cyclic voltammetry and electrochemical impedance spectroscopy show that the nanowire structure improves the electron and Li-ion transport in the electrode which results in better electrochemical kinetics than that of the anatase TiO2 nanowires. TiO2(B) nanowire can deliver a discharge capacity of 205.5 mAh g−1 at an ultrahigh rate of 10 A g−1 with a capacity retention of 70 mAh g−1 after 10,000 cycles.


Lithium-ion batteries Anode High rate Long cycles TiO2(B) nanowires 


Funding information

This work was financially supported by the National Natural Science Foundation of China (No. 11972157).


  1. 1.
    Wu HB, Chen JS, Hng HH, Lou XW (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4(8):2526–2542CrossRefGoogle Scholar
  2. 2.
    Yan X, Li Y, Li M, Jin Y, Du F, Chen G, Wei Y (2015) Ultrafast lithium storage in TiO2–bronze nanowires/N-doped graphene nanocomposites. J Mater Chem A 3(8):4180–4187CrossRefGoogle Scholar
  3. 3.
    Goriparti S, Miele E, Prato M, Scarpellini A, Marras S, Monaco S, Toma A, Messina GC, Alabastri A, Angelis FD, Manna L, Capiglia C, Zaccaria RP (2015) Direct synthesis of carbon-doped TiO2–bronze nanowires as anode materials for high performance lithium-ion batteries. ACS Appl Mater Interfaces 7(45):25139–25146CrossRefGoogle Scholar
  4. 4.
    Zhang W, Gong Y, Mellott NP, Liu D, Li J (2015) Synthesis of nickel doped anatase titanate as high performance anode materials for lithium ion batteries. J Power Sources 276:39–45CrossRefGoogle Scholar
  5. 5.
    Wang S, Guan BY, Yu L, Lou XW (2017) Rational design of three-layered TiO2@Carbon@MoS2 hierarchical nanotubes for enhanced lithium storage. Adv Mater 29(37):1702724CrossRefGoogle Scholar
  6. 6.
    Liu YT, Zhang P, Sun N, Anasori B, Zhu QZ, Liu H, Gogotsi Y, Xu B (2018) Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv Mater 30(23):1707334CrossRefGoogle Scholar
  7. 7.
    Sun H, Mei L, Liang J, Zhao Z, Lee C, Fei H, Ding M, Lau J, Li M, Wang C, Xu X, Hao G, Papandrea B, Shakir I, Dunn B, Huang Y, Duan X (2017) Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356(6338):599–604CrossRefGoogle Scholar
  8. 8.
    Reddy MV, Subba Rao GV, Chowdari BV (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113(7):5364–5457CrossRefGoogle Scholar
  9. 9.
    Shen L, Chen S, Maier J, Yu Y (2017) Carbon-coated Li3VO4 spheres as constituents of an advanced anode material for high-rate long-life lithium-ion batteries. Adv Mater 29(33):1701571CrossRefGoogle Scholar
  10. 10.
    Xia T, Zhang W, Murowchick JB, Liu G, Chen X (2013) A facile method to improve the photocatalytic and lithium-ion rechargeable battery performance of TiO2 nanocrystals. Adv Energy Mater 3(11):1516–1523CrossRefGoogle Scholar
  11. 11.
    Li K, Li B, Wu J, Kang F, Kim JK, Zhang TY (2017) Ultrafast charging and long-life Li-ion battery anodes of TiO2-B and anatase dual-phase nanowires. ACS Appl Mater Interfaces 9:35917–35926CrossRefGoogle Scholar
  12. 12.
    Mo R, Lei Z, Sun K, Rooney D (2014) Facile synthesis of anatase TiO2 quantum-dot/graphene-nanosheet composites with enhanced electrochemical performance for lithium-ion batteries. Adv Mater 26(13):2084–2088CrossRefGoogle Scholar
  13. 13.
    Dylla AG, Henkelman G, Stevenson KJ (2013) Lithium insertion in nanostructured TiO2(B) architectures. Acc Chem Res 46(5):1104–1112CrossRefGoogle Scholar
  14. 14.
    Chen JS, Lou XW (2010) The superior lithium storage capabilities of ultra-fine rutile TiO2 nanoparticles. J Power Sources 195(9):2905–2908CrossRefGoogle Scholar
  15. 15.
    Etacheri V, Yourey JE, Bartlett BM (2014) Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries. ACS Nano 8(2):1491–1499CrossRefGoogle Scholar
  16. 16.
    Byeon A, Boota M, Beidaghi M, Aken KV, Lee JW, Gogotsi Y (2015) Effect of hydrogenation on performance of TiO2(B) nanowire for lithium ion capacitors. Electrochem Commun 60:199–203CrossRefGoogle Scholar
  17. 17.
    Armstrong AR, Armstrong G, Canales J, García R, Bruce PG (2010) Lithium-ion intercalation into TiO2-B nanowires. Adv Mater 17(7):862–865CrossRefGoogle Scholar
  18. 18.
    Liu H, Bi Z, Sun XG, Unocic RR, Paranthaman MP, Dai S, Brown GM (2011) Mesoporous TiO2-B microspheres with superior rate performance for lithium ion batteries. Adv Mater 23(30):3450–3454CrossRefGoogle Scholar
  19. 19.
    Liu S, Jia H, Han L, Wang J, Gao P, Xu D, Yang J, Che S (2012) Nanosheet-constructed porous TiO2-B for advanced lithium ion batteries. Adv Mater 24(24):3201–3204CrossRefGoogle Scholar
  20. 20.
    Etacheri V, Kuo Y, Ven AVD, Bartlett BM (2013) Mesoporous TiO2-B microflowers composed of (110) facet-exposed nanosheets for fast reversible lithium-ion storage. J Mater Chem A 1(39):12028–12032CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Fu Q, Xu Q, Yan X, Zhang R, Guo Z, Du F, Wei Y, Zhang D, Chen G (2015) Improved electrochemical performance of nitrogen doped TiO2-B nanowires as anode materials for Li-ion batteries. Nanoscale 7(28):12215–12224CrossRefGoogle Scholar
  22. 22.
    Deng K, Zhou J, Huang H, Ling Y, Li C (2016) Electrochemical determination of nitrite using a reduced graphene oxide–multiwalled carbon nanotube-modified glassy carbon electrode. Anal Lett 49(18):2917–2930CrossRefGoogle Scholar
  23. 23.
    Li L, Zhang J, Zou Y, Jiang W, Lei W, Ma Z (2019) High-rate and long-term cycle stability of lithium-ion batteries enabled by boron-doping TiO2 nanofiber anodes. J Electroanal Chem 833:573–579CrossRefGoogle Scholar
  24. 24.
    Tang Y, Hong L, Wu Q, Li J, Hou G, Cao H, Wu L, Zheng G (2016) TiO2(B) nanowire arrays on Ti foil substrate as three-dimensional anode for lithium-ion batteries. Electrochim Acta 195:27–33CrossRefGoogle Scholar
  25. 25.
    Wang X, Li Z, Shi J, Yu Y (2014) One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem Rev 114(19):9346–9384CrossRefGoogle Scholar
  26. 26.
    Wang Q, Wen ZH, Li JH (2006) A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Adv Funct Mater 16(16):2141–2146CrossRefGoogle Scholar
  27. 27.
    Armstrong AR, Armstrong G, Canales J, Bruce PG (2005) TiO2-B nanowires as negative electrodes for rechargeable lithium batteries. J Power Sources 146(1):501–506CrossRefGoogle Scholar
  28. 28.
    Li J, Wan W, Zhou H, Li J, Xu D (2011) Hydrothermal synthesis of TiO2(B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries. Chem Commun 47(12):3439–3441CrossRefGoogle Scholar
  29. 29.
    Zhang W, Zhang Y, Yu L, Wu N-L, Huang H, Wei M (2019) TiO2-B nanowires via topological conversion with enhanced lithium-ion intercalation properties. J Mater Chem A 7(8):3842–3847CrossRefGoogle Scholar
  30. 30.
    Lan T, Dou J, Xie F, Xiong P, Wei M (2015) Ultrathin TiO2-B nanowires with enhanced electrochemical performance for Li-ion batteries. J Mater Chem A 3(18):10038–10044CrossRefGoogle Scholar
  31. 31.
    Zukalová M, Kalbáč M, Kavan L, Exnar I, Graetzel‡ M (2005) Pseudocapacitive lithium storage in TiO2(B). Chem Mater 17 (5):1248–1255CrossRefGoogle Scholar
  32. 32.
    Armstrong AR, Armstrong G, Canales J, Bruce PG (2004) TiO2-B nanowires. Angew Chem Int Edit 116(17):2336–2338CrossRefGoogle Scholar
  33. 33.
    Nuspl G, Yoshizawa K, Yamabe T (1997) Lithium intercalation in TiO2 modifications. J Mater Chem 7(12):2529–2536CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information and Electronic EngineeringHunan University of Science and TechnologyXiangtanChina
  2. 2.National−Provincial Laboratory of Special Function Thin Film MaterialsXiangtan UniversityXiangtanChina

Personalised recommendations