Advertisement

Ionics

pp 1–9 | Cite as

A high performance Li/S cell cathode with hierarchical architecture composed of ketjenblack@mesoporous carbon/sulfur hybrid

  • Yilun Hong
  • Xiaoxi Zhang
  • Junwei Hao
  • Yonghua Wan
  • Yao Chen
  • Jianwei Cong
  • Jiangnan Chen
  • Xiaomin LiuEmail author
  • Hui Yang
Original Paper
  • 8 Downloads

Abstract

A ketjenblack@mesoporous carbon (KB@Meso-C) hybrid with hierarchical architecture was prepared by carbonizing the ketjenblack@metal-organic framework hybrid (KB@MOF-5). Meso-C with large pore volume can host a large amount of sulfur and alleviate the dissolution and migration of the lithium polysulfides, while the highly conductive KB uniformly distributed within the hybrid matrix can provide fast electron transportation pathways and high specific surface area. When 62 wt% of sulfur is encapsulated, KB@Meso-C/S cathode shows the initial discharge capacity of 997 mA h g−1, and retains 665 mA h g−1 after 300 cycles at 1 C, with 0.13% capacity decay per cycle and 97.70% Coulombic efficiency. In addition, KB@Meso-C/S cathode presents a remarkable rate capability, reaching 518 mA h g−1 at 2 C. The hierarchical KB@Meso-C/S presents comparable performance to other complicated composites. The pore size distribution plays a major role to confine polysulfide and alleviate the shuttle effect for KB@Meso-C/S cathode.

Keywords

Ketjenblack@metal-organic framework Ketjenblack@mesoporous carbon Hybrid nanocomposites cathode 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (Grant nos. 21573109 and 21206069), the Research Innovation Program for College Graduates of Jiangsu Province in 2016 (Grant no. KYLX16_0590), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

  1. 1.
    Tian SB, Yin YH, Cao ZX, Yue HY, Yang ST (2018) Sulfur grown around carbon nanotubes as a cathode material for Li/S battery. Ionics 24(1):33–41.  https://doi.org/10.1007/s11581-017-2165-z CrossRefGoogle Scholar
  2. 2.
    Chung SH, Manthiram A (2018) Rational design of statically and dynamically stable lithium-sulfur batteries with high sulfur loading and low electrolyte/sulfur ratio. Adv. Mater 30(6):1705951.  https://doi.org/10.1002/adma.201705951 CrossRefGoogle Scholar
  3. 3.
    Liu YA, Cheng M, Guo XD, Wu ZG, Chen YX, Xiang W, Li JS, Zhong BH (2017) Synthesis and electrochemical performance of micro-mesoporous carbon-sulfur composite cathode for Li-S batteries. Ionics 23(11):2951–2960.  https://doi.org/10.1007/s11581-017-2125-7 CrossRefGoogle Scholar
  4. 4.
    Ruan CP, Yang Z, Nie HG, Zhou XM, Guo ZQ, Wang L, Ding XW, Chen XA, Huang SM (2018) Three-dimensional sp2 carbon networks prepared by ultrahigh temperature treatment for ultrafast lithium-sulfur batteries. Nanoscale 10:10999–11005.  https://doi.org/10.1039/c8nr02983k CrossRefPubMedGoogle Scholar
  5. 5.
    He JR, Luo L, Chen YF, Manthiram A (2017) Yolk–shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries. Adv. Mater 29(34):1702707.  https://doi.org/10.1002/adma.201702707 CrossRefGoogle Scholar
  6. 6.
    Cheng M, Liu YN, Guo XD, Wu ZG, Chen YX, Li JS, Li LY, Zhong BH (2017) A novel binder-sulfonated polystyrene for the sulfur cathode of Li-S batteries. Ionics 23(9):2251–2258.  https://doi.org/10.1007/s11581-017-2087-9 CrossRefGoogle Scholar
  7. 7.
    Xiao ZB, Yang Z, Zhang LJ, Pan H, Wang RH (2017) Sandwich-type NbS2@S@I-doped graphene for high-sulfur-loaded, ultrahigh-rate, and long-life lithium-sulfur batteries. ACS Nano 11(8):8488–8498.  https://doi.org/10.1021/acsnano.7b04442 CrossRefPubMedGoogle Scholar
  8. 8.
    Liu X, Huang JQ, Zhang Q, Mai LQ (2017) Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater 29(20):1601759.  https://doi.org/10.1002/adma.201601759 CrossRefGoogle Scholar
  9. 9.
    He ZJ, Tang LB, Wang JL, An CS, Xiao B, Zheng JC (2019) Synthesis and characterization of a sulfur/TiO2 composite for Li-S battery. Ionics 25(1):9–15.  https://doi.org/10.1007/s11581-018-2570-y CrossRefGoogle Scholar
  10. 10.
    Kang WM, Deng NP, Ju JG, Li QX, Wu DY, Ma XM, Li L, Naebe M, Cheng BW (2016) A review of recent developments in rechargeable lithium-sulfur batteries. Nanoscale 8:16541–16588.  https://doi.org/10.1039/c6nr04923k CrossRefPubMedGoogle Scholar
  11. 11.
    Wang L, Yang Z, Nie HG, Gu CC, Hua WX, Xu XJ, Chen XA, Chen Y, Huang SM (2016) A lightweight multifunctional interlayer of sulfur-nitrogen dual-doped graphene for ultrafast, longlife lithium-sulfur batteries. J Mater Chem A 4:15343–15352.  https://doi.org/10.1039/c6ta07027b CrossRefGoogle Scholar
  12. 12.
    Zhao EY, Nie KH, Yu XQ, Hu YS, Wang FW, Xiao J, Li H, Huang XJ (2018) Advanced characterization techniques in promoting mechanism understanding for lithium-sulfur batteries. Adv. Funct. Mater 28(38):1707543.  https://doi.org/10.1002/adfm.201707543 CrossRefGoogle Scholar
  13. 13.
    Lee JS, Kim W, Jang J, Manthiram A (2017) Sulfur-embedded activated multichannel carbon nanofiber composites for long-life, high-rate Lithium-sulfur batteries. Adv. Energy Mater 7(5):1601943.  https://doi.org/10.1002/aenm.201601943 CrossRefGoogle Scholar
  14. 14.
    Zhang ZA, Li Q, Zhang K, Lai YQ, Li J (2015) Micro-nano structure composite cathode material with high sulfur loading for advanced lithium-sulfur batteries. Electrochim Acta 152:53–60.  https://doi.org/10.1016/j.electacta.2014.11.099 CrossRefGoogle Scholar
  15. 15.
    Tao XY, Chen XR, Xia Y, Huang H, Gan YP, Wu R, Chen F, Zhang WK (2013) Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium-sulfur batteries. J Mater Chem A 1:3295–3301.  https://doi.org/10.1039/c2ta01213h CrossRefGoogle Scholar
  16. 16.
    Jeong TG, Chun J, Cho BW, Lee J, Kim YT (2017) Enhanced performance of sulfur-infiltrated bimodal mesoporous carbon foam by chemical solution deposition as cathode materials for lithium sulfur batteries. Sci Rep 7:42238.  https://doi.org/10.1038/srep42238 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Xia W, Mahmood A, Zou RQ, Xu Q (2015) Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci 8(7):1837–1866.  https://doi.org/10.1039/c5ee00762c CrossRefGoogle Scholar
  18. 18.
    Li ZQ, Yin LW (2015) MOF-derived, N-doped, hierarchically porous carbon sponges as immobilizers to confine selenium as cathodes for Li-Se batteries with superior storage capacity and perfect cycling stability. Nanoscale 7(21):9697–9606.  https://doi.org/10.1039/c5nr00903k CrossRefGoogle Scholar
  19. 19.
    Xi K, Cao S, Peng XY, Ducati C, Kumar RV, Cheetham AK (2013) Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries. Chem Commun 49(22):2192–2194.  https://doi.org/10.1039/c3cc38009b CrossRefGoogle Scholar
  20. 20.
    Xu GY, Ding B, Shen LF, Nie P, Han JP, Zhang XG (2014) Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery. J Mater Chem A 1(14):4490–4496.  https://doi.org/10.1039/c3ta00004d CrossRefGoogle Scholar
  21. 21.
    Qian XY, Jin LN, Wang SW, Yao SS, Rao DW, Shen XQ, Xi XM, Xiang J (2016) Zn-MOF derived micro/meso porous carbon nanorod for high performance lithium-sulfur battery. RSC Adv 6(97):94629–94635.  https://doi.org/10.1039/c6ra19356k CrossRefGoogle Scholar
  22. 22.
    Yang SJ, Choi JY, Chae HK, Cho JH, Nahm KS, Park CR (2009) Preparation and enhanced hydrostability and hydrogen storage capacity of CNT@MOF-5 hybrid composite. Chem Mater 21(9):1893–1897.  https://doi.org/10.1021/cm803502y CrossRefGoogle Scholar
  23. 23.
    Xiang ZH, Peng X, Cheng X, Li XJ, Cao DP (2011) CNT@Cu3(BTC)2 and metal-organic frameworks for separation of CO2/CH4 mixture. J Phys Chem C 115(40):19864–19871.  https://doi.org/10.1021/jp206959k CrossRefGoogle Scholar
  24. 24.
    Chaikittisilp W, Ariga K, Yamauchi Y (2013) A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J Mater Chem A 1(1):14–19.  https://doi.org/10.1039/c2ta00278g CrossRefGoogle Scholar
  25. 25.
    Yang SJ, Kim T, Im JH, Kim YS, Lee K, Jung H, Park CR (2012) MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem Mater 24(3):464–470.  https://doi.org/10.1021/cm202554j CrossRefGoogle Scholar
  26. 26.
    Panella B, Hirscher M, Putter H, Muller U (2006) Hydrogen adsorption in metal-organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv Funct Mater 16(4):520–524.  https://doi.org/10.1002/adfm.200500561 CrossRefGoogle Scholar
  27. 27.
    Li J, Peng B, Zhou G, Zhang ZA, Lai YQ, Jia M (2013) Partially cracked carbon nanotubes as cathode materials for lithium-air batteries. ECS Electrochem. Lett 2(2):A25–A27.  https://doi.org/10.1149/2.009302eel CrossRefGoogle Scholar
  28. 28.
    Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed 50(26):5904–5908.  https://doi.org/10.1002/anie.201100637 CrossRefGoogle Scholar
  29. 29.
    Ji XL, Evers S, Black R, Nazar LF (2011) Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat Commun 2(325).  https://doi.org/10.1038/ncomms1293
  30. 30.
    Choi JW, Cheruvally G, Kim DS, Ahn JH, Kim KW, Ahn HJ (2008) Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive. J Power Sources 183(1):441–445.  https://doi.org/10.1016/j.jpowsour.2008.05.038 CrossRefGoogle Scholar
  31. 31.
    Deng ZF, Zhang ZA, Lai YQ, Liu J, Li J, Liu YX (2013) Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading. J Electrochem Soc 160(4):A553–A558.  https://doi.org/10.1149/2.026304jes CrossRefGoogle Scholar
  32. 32.
    Wei Seh Z, Li WY, Cha JJ, Zheng GY, Yang Y, McDowell MT, Hsu PC, Cui Y (2013) Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat Commun 4:1331.  https://doi.org/10.1038/ncomms2327 CrossRefPubMedGoogle Scholar
  33. 33.
    Wang HQ, Zhang CF, Chen ZX, Liu HK, Guo ZP (2015) Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium-sulfur batteries. Carbon 81:782–787.  https://doi.org/10.1016/j.carbon.2014.10.024 CrossRefGoogle Scholar
  34. 34.
    Yuan Z, Peng HJ, Huang JQ, Liu XY, Wang DW, Cheng XB, Zhang Q (2014) Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv Funct Mater 24(39):6105–6112.  https://doi.org/10.1002/adfm.201401501 CrossRefGoogle Scholar
  35. 35.
    Zheng SY, Chen Y, Xu YH, Yi F, Zhu YJ, Liu YH, Yang JH, Wang CS (2013) In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries. ACS Nano 7(12):10995–11003.  https://doi.org/10.1021/nn404601h CrossRefPubMedGoogle Scholar
  36. 36.
    Li D, Han F, Wang S, Cheng F, Sun Q, Li WC (2013) High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery. ACS Appl Mater Inter 5(6):2208–2213.  https://doi.org/10.1021/am4000535 CrossRefGoogle Scholar
  37. 37.
    Chung SH, Manthiram A (2014) A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries. Adv Mater 26(43):7352–7357.  https://doi.org/10.1002/adma.201402893 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yilun Hong
    • 1
  • Xiaoxi Zhang
    • 1
  • Junwei Hao
    • 1
  • Yonghua Wan
    • 1
  • Yao Chen
    • 1
  • Jianwei Cong
    • 1
  • Jiangnan Chen
    • 1
  • Xiaomin Liu
    • 1
    Email author
  • Hui Yang
    • 1
  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations