Advertisement

Ionics

pp 1–12 | Cite as

Theoretical investigation of methanol oxidation on Pt and PtNi catalysts

  • Qianyuan Lv
  • Xuefeng RenEmail author
  • Lifen Liu
  • Weixin Guan
  • Anmin Liu
Original Paper
  • 45 Downloads

Abstract

DFT calculations were employed to study the catalytic oxidation pathways of methanol on Pt(111), Pt(200), Pt(220), and Pt(311) surface and PtNi surface by introducing Ni to four Pt crystal planes. The pathway CH3OH-CH2OH-CHOH-COH-CO-COOH-CO2 was designed as a basic oxidation route in acid medium. All the geometry configurations and reaction energies of reactant, intermediates and product were optimized as research models and analyzed. It is found that the Pt(111) crystal plane and Pt(311) crystal plane prefer to oxidize the methanol among four pure Pt crystal planes. The Pt(111)-1,2,3Ni-4Pt presented the lowest energy barrier, which was proved to be an optimal catalyst for Ni-doped Pt among Pt crystal planes. The present study can provide a new insight into modeling oxidation reaction pathways for methanol on Pt and PtNi surface and give guidance to achieve the ultimate goal of the designing Pt-based alloy catalysts and guiding the experiments for methanol oxidation.

Keywords

Catalyzes Fuel cells Modeling 

Notes

Funding information

This study was financially supported by the National Natural Science Foundation of China (21908017 and 21902021), the Fundamental Research Funds for the Central Universities (DUT18LK21 and DUT18LK15), the Natural Science Foundation of Liaoning Province (20180510020), and Supercomputing Center of Dalian University of Technology.

Supplementary material

11581_2019_3280_MOESM1_ESM.pdf (726 kb)
ESM 1 (PDF 726 kb)

References

  1. 1.
    Li L, Hu L, Li J, Wei Z (2015) Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells. Nano Res 8(2):418–440CrossRefGoogle Scholar
  2. 2.
    Wang J, Wang H, Fan Y (2018) Techno-economic challenges of fuel cell commercialization. Engineering 4(3):352–360CrossRefGoogle Scholar
  3. 3.
    Liu M, Zhang R, Chen W (2014) Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem Rev 114(10):5117–5160PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Zhu F, Kim J, Tsao K-C, Zhang J, Yang H (2015) Recent development in the preparation of nanoparticles as fuel cell catalysts. Curr Opin Chem Eng 8:89–97CrossRefGoogle Scholar
  5. 5.
    Zhou LH, Wang YX, Tang J, Li JX, Wang SL, Wang Y (2017) Facile synthesis of holey graphene-supported Pt catalysts for direct methanol electro-oxidation. Microporous Mesoporous Mater 247:116–123CrossRefGoogle Scholar
  6. 6.
    Zhang X, Zhang J, Huang H, Jiang Q, Wu Y (2017) Platinum nanoparticles anchored on graphene oxide-dispersed pristine carbon nanotube supports: high-performance electrocatalysts toward methanol electrooxidation. Electrochim Acta 258:919–926CrossRefGoogle Scholar
  7. 7.
    Zheng Y, Zhan H, Tang H, Luo J, Dang D, Shu T, Ren J, Tian X, Liao S (2017) Atomic platinum layer coated titanium copper nitride supported on carbon nanotubes for the methanol oxidation reaction. Electrochim Acta 248:349–355CrossRefGoogle Scholar
  8. 8.
    Ayán-Varela M, Ruiz-Rosas R, Villar-Rodil S, Paredes JI, Cazorla-Amorós D, Morallón E, Martínez-Alonso A, Tascón JMD (2017) Efficient Pt electrocatalysts supported onto flavin mononucleotide–exfoliated pristine graphene for the methanol oxidation reaction. Electrochim Acta 231:386–395CrossRefGoogle Scholar
  9. 9.
    Du P, Gao Y, Wu P, Cai C (2018) Exploring the methanol decomposition mechanism on the Pt3Ni(100) surface: a periodic density functional theory study. Phys Chem Chem Phys 20(15):10132–10141PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Tan C, Sun Y, Zheng J, Wang D, Li Z, Zeng H, Guo J, Jing L, Jiang L (2017) A self-supporting bimetallic Au@Pt core-shell nanoparticle electrocatalyst for the synergistic enhancement of methanol oxidation. Sci Rep 7(1):6347PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kong F, Du C, Ye J, Chen G, Du L, Yin G (2017) Selective surface engineering of heterogeneous nanostructures: in situ unraveling of the catalytic mechanism on Pt–Au catalyst. ACS Catal 7(11):7923–7929CrossRefGoogle Scholar
  12. 12.
    Bai L (2018) Synthesis of PtRu/Ru heterostructure for efficient methanol electrooxidation: the role of extra Ru. Appl Surf Sci 433:279–284CrossRefGoogle Scholar
  13. 13.
    Patel PP, Datta MK, Jampani PH, Hong D, Poston JA, Manivannan A, Kumta PN (2015) High performance and durable nanostructured TiN supported Pt50–Ru50 anode catalyst for direct methanol fuel cell (DMFC). J Power Sources 293:437–446CrossRefGoogle Scholar
  14. 14.
    Esabattina S, Posa VR, Zhanglian H, Godlaveeti SK, Nagi Reddy RR, Somala AR (2018) Fabrication of bimetallic PtPd alloy nanospheres supported on rGO sheets for superior methanol electro-oxidation. Int J Hydrog Energy 43(8):4115–4124CrossRefGoogle Scholar
  15. 15.
    Ma J, Tong X, Wang J, Zhang G, Lv Y, Zhu Y, Sun S, Yang Y-C, Song Y (2019) Rare-earth metal oxide hybridized PtFe nanocrystals synthesized via microfluidic process for enhanced electrochemical catalytic performance. Electrochim Acta 299:80–88CrossRefGoogle Scholar
  16. 16.
    Ding J, Ji S, Wang H, Pollet BG, Wang R (2017) Tailoring nanopores within nanoparticles of PtCo networks as catalysts for methanol oxidation reaction. Electrochim Acta 255:55–62CrossRefGoogle Scholar
  17. 17.
    Rodriguez JR, Fuentes Moyado S, Oropeza-Guzman MT, Aguirre SB, Romo-Herrera J, Huirache-Acuña R, Berhault G, Alonso-Núñez G (2016) Methanol dehydrogenation and oxidation on Pt 1–X Ni X /CNTs at low temperature: effect of Ni addition. Renew Energy 99:437–442CrossRefGoogle Scholar
  18. 18.
    Hu Y, Shao Q, Wu P, Zhang H, Cai C (2012) Synthesis of hollow mesoporous Pt–Ni nanosphere for highly active electrocatalysis toward the methanol oxidation reaction. Electrochem Commun 18:96–99CrossRefGoogle Scholar
  19. 19.
    Wang S, He P, He M, Dong F, Liu H, Lei H, Zhang X, He S (2018) Enhanced electrocatalytic activity of dual template based Pt/Cu-zeolite A/Graphene for methanol electrooxidation. Chin J Chem 36(1):37–41CrossRefGoogle Scholar
  20. 20.
    Kim Y, Lee H, Lim T, Kim H-J, Kwon OJ (2017) Non-conventional Pt-Cu alloy/carbon paper electrochemical catalyst formed by electrodeposition using hydrogen bubble as template. J Power Sources 364:16–22CrossRefGoogle Scholar
  21. 21.
    Tao J-P, Ji Q-S, Shao G-F, Li Z-P, Liu T-D, Wen Y-H (2017) Stable structure optimization of Pt-X-Cu (X = Au, Ag, Pd and Rh) trimetallic nanoparticles. J Alloys Compd 716:240–250CrossRefGoogle Scholar
  22. 22.
    Wang, Z. 2017, Electrochemical synthesis of PtNiCo/3DGN composite catalyst and its performance for methanol electrooxidation. Int J Electrochem Sci, 10958–10968Google Scholar
  23. 23.
    Liu ZY, Wang GF (2017) Shape-dependent surface magnetism of Co-Pt and Fe-Pt nanoparticles from first principles. Phys Rev B 96(22):7Google Scholar
  24. 24.
    Antolini E, Gonzalez ER (2011) Effect of synthesis method and structural characteristics of Pt–Sn fuel cell catalysts on the electro-oxidation of CH3OH and CH3CH2OH in acid medium☆. Catal Today 160(1):28–38CrossRefGoogle Scholar
  25. 25.
    Meng J-H, Menning CA, Zellner MB, Chen JG (2010) Effects of bimetallic modification on the decomposition of CH3OH and H2O on Pt/W(110) bimetallic surfaces. Surf Sci 604(21–22):1845–1853CrossRefGoogle Scholar
  26. 26.
    Chepkasov IV, Visotin MA, Kovaleva EA, Manakhov AM, Baidyshev VS, Popov ZI (2018) Stability and electronic properties of PtPd nanoparticles via MD and DFT calculations. J Phys Chem C 122(31):18070–18076CrossRefGoogle Scholar
  27. 27.
    Ou L, Huang J (2017) DFT-based study on the optimal CH 3 OH decomposition pathways in aqueous-phase: homolysis versus heterolysis. Chem Phys Lett 679:66–70CrossRefGoogle Scholar
  28. 28.
    Zhao L, Wang S, Ding Q, Xu W, Sang P, Chi Y, Lu X, Guo W (2015) The oxidation of methanol on PtRu(111): a periodic density functional theory investigation. J Phys Chem C 119(35):20389–20400CrossRefGoogle Scholar
  29. 29.
    Orazi V, Bechthold P, Jasen PV, Faccio R, Pronsato ME, González EA (2017) DFT study of methanol adsorption on PtCo(111). Appl Surf Sci 420:383–389CrossRefGoogle Scholar
  30. 30.
    Yuan G, Wang L, Zhang X, Wang Q (2019) Self-supported Pt nanoflakes-doped amorphous Ni(OH)2 on Ni foam composite electrode for efficient and stable methanol oxidation. J Colloid Interface Sci 536:189–195PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Gong W, Jiang Z, Wu R, Liu Y, Huang L, Hu N, Tsiakaras P, Shen PK (2019) Cross-double dumbbell-like Pt–Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Appl Catal B Environ 246:277–283CrossRefGoogle Scholar
  32. 32.
    Yang P, Yuan X, Hu H, Liu Y, Zheng H, Yang D, Chen L, Cao M, Xu Y, Min Y, Li Y, Zhang Q (2018) Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv Funct Mater 28(1):1704774CrossRefGoogle Scholar
  33. 33.
    Wang C, Zhang Y, Zhang Y, Xu P, Feng C, Chen T, Guo T, Yang F, Wang Q, Wang J, Shi M, Fan L, Chen S (2018) Highly ordered hierarchical Pt and PtNi nanowire arrays for enhanced electrocatalytic activity toward methanol oxidation. ACS Appl Mater Interfaces 10(11):9444–9450PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Lu S, Li H, Sun J, Zhuang Z (2018) Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles. Nano Res 11(4):2058–2068CrossRefGoogle Scholar
  35. 35.
    Mathiyarasu J, Remona AM, Mani A, Phani KLN, Yegnaraman V (2004) Exploration of electrodeposited platinum alloy catalysts for methanol electro-oxidation in 0.5 M H2SO4: Pt-Ni system. J Solid State Electrochem 8(12):968–975CrossRefGoogle Scholar
  36. 36.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Delley B (1996) Fast calculation of electrostatics in crystals and large molecules. J Phys Chem 100(15):6107–6110CrossRefGoogle Scholar
  38. 38.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45(23):13244–13249CrossRefGoogle Scholar
  39. 39.
    Zhao J, Chen Z (2017) Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. J Am Chem Soc 139(36):12480–12487PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Liu G, Wang B, Liu T, Wang L, Luo H, Gao T, Wang F, Liu A, Wang D (2018) 3D self-supported hierarchical core/shell structured MnCo2O4@CoS arrays for high-energy supercapacitors. J Mater Chem A 6(4):1822–1831CrossRefGoogle Scholar
  41. 41.
    Liu P, Rodriguez JA (2005) Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J Am Chem Soc 127(42):14871–14878PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Yen CH, Shimizu K, Lin Y-Y, Bailey F, Cheng IF, Wai CM (2007) Chemical fluid deposition of Pt-based bimetallic nanoparticles on multiwalled carbon nanotubes for direct methanol fuel cell application. Energy Fuel 21(4):2268–2271CrossRefGoogle Scholar
  43. 43.
    Habibi B, Dadashpour E (2013) Carbon-ceramic supported bimetallic Pt–Ni nanoparticles as an electrocatalyst for electrooxidation of methanol and ethanol in acidic media. Int J Hydrog Energy 38(13):5425–5434CrossRefGoogle Scholar
  44. 44.
    Esrafili MD, Sharifi F, Dinparast L (2017) Catalytic hydrogenation of CO2 over Pt- and Ni-doped graphene: a comparative DFT study. J Mol Graph Model 77:143–152PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Feng L, Yang H, Wang F (2011) Experimental and theoretical studies for corrosion inhibition of carbon steel by imidazoline derivative in 5% NaCl saturated Ca(OH)2 solution. Electrochim Acta 58:427–436CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qianyuan Lv
    • 1
  • Xuefeng Ren
    • 1
    Email author
  • Lifen Liu
    • 1
  • Weixin Guan
    • 2
  • Anmin Liu
    • 2
  1. 1.School of Ocean Science and TechnologyDalian University of TechnologyPanjinChina
  2. 2.State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of TechnologyPanjinChina

Personalised recommendations