pp 1–9 | Cite as

A flexible electrode of TiO2 nanowire arrays modified with graphene for solid-state cable-type supercapacitors

  • Jinghao HuoEmail author
  • Yujia Xue
  • Cheng Cheng
  • Shouwu Guo
Original Paper


Solid-state cable-type supercapacitors (SSCTSs) have a wide application in wearable and flexible electronic devices. The fiber-shaped electrode of fabricating TiO2 nanowire arrays (NWAs) on Ti wire is widly used in flexible electronic devices. For improving the conductivity, reduced graphene oxide (rGO) nanosheets are prepared on the surface of TiO2 NWAs by a simple electrophoretic deposition method and NaBH4 treatment. The electrochemical tests reveal that this TiO2/rGO electrode has an excellent capacitive property than pure TiO2 electrode in the optimum potential window (− 0.4~0.6 V). Two similar TiO2/rGO electrodes with Poly (vinyl alcohol)-LiCl solid-state electrolyte are assembled SSCTSs, which deliver a specific capacitance as high as 60.8 μF cm−1 at 5 μA cm−1 and a high energy density of 12.2 mWh cm−1 with a wide potential window from 0 to 1.2 V. Furthermore, this SSCTS exhibits outstanding banding performance at different state and long cycle life. These results demonstrate that fiber-shaped TiO2/rGO electrode is promising for high-performance wearable and flexible electronic devices.


TiO2 nanowire arrays Graphene Solid-state Cable-type Supercapacitors 


Funding information

This work received financial support from the Fujian Key Laboratory of Photoelectric Functional Materials Open Research Project (FJPFM-201701) and the Natural Science Foundation of Shaanxi University of Science and Technology (2016BJ-49).

Supplementary material

11581_2019_3275_MOESM1_ESM.doc (368 kb)
ESM 1 (DOC 368 kb)


  1. 1.
    Li Q, Zhang Q, Sun J, Liu C, Guo J, He B, Zhou Z, Man P, Li C, Xie L, Yao Y (2019) All hierarchical Core-shell heterostructures as novel binder-free electrode materials for ultrahigh-energy-density wearable asymmetric supercapacitors. Adv Sci 6:1801379CrossRefGoogle Scholar
  2. 2.
    Li Q, Zhang Q, Liu C, Sun J, Guo J, Zhang J, Zhou Z, He B, Pan Z, Yao Y (2019) Flexible all-solid-state fiber-shaped Ni-Fe batteries with high electrochemical performance. J Mater Chem A 7:520–530CrossRefGoogle Scholar
  3. 3.
    Li Q, Zhang Q, Liu C, Zhou Z, Li C, He B, Man P, Wang X, Yao Y (2019) Anchoring V2O5 nanosheets on hierarchical titanium nitride nanowire arrays to form core-shell heterostructures as a superior cathode for highperformance wearable aqueous rechargeable zinc-ion batteries. J Mater Chem A 7:12997–13006CrossRefGoogle Scholar
  4. 4.
    Zhang Q, Li C, Li Q, Pan Z, Sun J, Zhou Z, He B, Man P, Xie L, Kang L, Wang X, Yang J, Zhang T, Shum PP, Li Q, Yao Y, Wei L (2019) Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett 19:4035–4042PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Sun J, Huang Y, Sea Y, Xue Q, Wang Z, Zhu M, Li H, Tao X, Zhi C, Hu H (2017) Recent progress of fiber-shaped asymmetric supercapacitors. Mater Today Energy 5:1–14CrossRefGoogle Scholar
  6. 6.
    Xue Q, Sun J, Huang Y, Zhu M, Pei Z, Li H, Wang Y, Li N, Zhang H, Zhi C (2017) Recent progress on flexible and wearable supercapacitors. Small 45:1701827CrossRefGoogle Scholar
  7. 7.
    Meng F, Li Q, Zheng L (2017) Flexible fiber-shaped supercapacitors: design, fabrication, and multi-functionalities. Energy Storage Mater 8:85–109CrossRefGoogle Scholar
  8. 8.
    Chen Y, Xu B, Wen J, Gong J, Hua T, Kan C, Deng J (2018) Design of novel wearable, stretchable, and waterproof cable-type supercapacitors based on high-performance nickel cobalt sulfide-coated etching-annealed yarn electrodes. Small 14:1704373CrossRefGoogle Scholar
  9. 9.
    Vellacheri R, Zhao H, Mühlstädt M, Ming J, Al-Haddad A, Wu M, Jandt K, Lei Y (2016) All-solid-state cable-type supercapacitors with ultrahigh rate capability. Adv Mater Technol 1:1600012CrossRefGoogle Scholar
  10. 10.
    Palchoudhury S, Ramasamy K, Gupta R, Gupta A (2019) Flexible supercapacitors: a materials perspective. Front Mater 5:83CrossRefGoogle Scholar
  11. 11.
    Lu S, Jin M, Zhang Y, Niu Y, Gao J, Li C (2017) Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv Energy Mater 8:1702545CrossRefGoogle Scholar
  12. 12.
    Lv T, Yao Y, Li N, Chen T (2016) Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes. Nano Today 11:644–660CrossRefGoogle Scholar
  13. 13.
    Huo J, Zheng P, Wang X, Guo S (2018) Three-dimensional sulphur/nitrogen co-doped reduced graphene oxide as high-performance supercapacitor binder-free electrodes. Appl Surf Sci 442:575–580CrossRefGoogle Scholar
  14. 14.
    Jiang Q, Kurra N, Alhabeb M, Gogotsi Y, Alshareef H (2018) All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv Energy Mater 8:1703043CrossRefGoogle Scholar
  15. 15.
    Zhu S, Li L, Liu J, Wang H, Wang T, Zhang Y, Zhang L, Ruoff R, Dong F (2018) Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors. ACS Nano 12:1033–1042PubMedCrossRefGoogle Scholar
  16. 16.
    Jiao Y, Hong W, Li P, Wang L, Chen G (2019) Metal-organic framework derived Ni/NiO micro-particles with subtle lattice distortions for high-performance electrocatalyst and supercapacitor. Appl Catal B: Environ 244:732–739CrossRefGoogle Scholar
  17. 17.
    Liu G, Wang B, Liu T, Wang L, Luo H, Gao T, Wang F, Liu A, Wang D (2018) 3D self-supported hierarchical core/shell structured MnCo2O4@CoS arrays for high-energy supercapacitors. J Mater Chem A 6:1822–1831CrossRefGoogle Scholar
  18. 18.
    Li R, Wang S, Huang Z, Lu F, He T (2016) NiCo2S4@Co(OH)2 core-shell nanotube arrays in situ grown on Ni foam for high performances asymmetric supercapacitors. J Power Sources 312:156–164CrossRefGoogle Scholar
  19. 19.
    Huo J, Xue Y, Zhang X, Guo S (2018) Hierarchical porous reduced graphene oxide decorated with molybdenum disulfide for high-performance supercapacitors. Electrochim Acta 292:639–645CrossRefGoogle Scholar
  20. 20.
    Lin Y, Zhang H, Liao H, Zhao Y, Li K (2019) A physically crosslinked, self-healing hydrogel electrolyte for nano-wire PANI flexible supercapacitors. Chem Eng J 367:139–148CrossRefGoogle Scholar
  21. 21.
    Wen J, Xu B, Zhou J, Chen Y (2018) Novel high-performance asymmetric supercapacitors based on nickel-cobalt composite and PPy for flexible and wearable energy storage. J Power Sources 402:91–98CrossRefGoogle Scholar
  22. 22.
    Qi R, Nie J, Liu M, Xia M, Lu X (2018) Stretchable V2O5/PEDOT supercapacitors: a modular fabrication process and charging with triboelectric nanogenerators. Nanoscale 10:7719–7725PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Zhong J, Zhao Y, Ding L, Jia H, Ma W, Chen C, Zhao J (2019) Opposite photocatalytic oxidation behaviors of BiOCl and TiO2: direct hole transfer vs. indirect OH oxidation. Appl Catal B: Environ 241:514–520CrossRefGoogle Scholar
  24. 24.
    Lan Z, Xu X, Zhang X, Tang J, Zhang L, He X, Wu J (2018) Low-temperature solution-processed efficient electron-transporting layers based on BF4 --capped TiO2 nanorods for high-performance planar perovskite solar cells. J Mater Chem C 6:334–341CrossRefGoogle Scholar
  25. 25.
    Zheng P, Liu T, Su Y, Zhang L, Guo S (2016) TiO2 nanotubes wrapped with reduced graphene oxide as a high-performance anode material for lithium-ion batteries. Sci Rep 6:36580–36587PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Yang S, Lin Y, Song X, Zhang P, Gao L (2015) Covalently coupled ultrafine H-TiO2 nanocrystals/nitrogen-doped graphene hybrid materials for high-performance supercapacitor. ACS Appl Mater Interfaces 7:17884–17892PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Sun X, Xie M, Wang G, Sun H, Cavanagh A, Travis J, George S, Lian J (2012) Atomic layer deposition of TiO2 on graphene for supercapacitors. J Electrochem Soc 159:A364–A369CrossRefGoogle Scholar
  28. 28.
    Pham V, Nguyen-Phan T, Tong X, Rajagopalan B, Chung J, Dickerson J (2018) Hydrogenated TiO2@reduced graphene oxide sandwich-like nanosheets for high voltage supercapacitor applications. Carbon 126:135–144CrossRefGoogle Scholar
  29. 29.
    Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K, Al-Deyabd S, Lai Y (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A 4:6772–6801CrossRefGoogle Scholar
  30. 30.
    Vellacheri R, Zhao H, Mühlstädt M, Al-Haddad A, Jandt K, Lei Y (2017) Rationally engineered electrodes for a high-performance solid-state cable-type supercapacitor. Adv Funct Mater 27:1606696CrossRefGoogle Scholar
  31. 31.
    Yang Q, Xu Z, Gao C (2018) Graphene fiber based supercapacitors: strategies and perspective toward high performances. J Energy Chem 27:6–11CrossRefGoogle Scholar
  32. 32.
    Ding Y, Bai W, Sun J, Wu Y, Memon M, Wang C, Liu C, Huang Y, Geng J (2016) Cellulose tailored anatase TiO2 nanospindles in three-dimensional graphene composites for high-performance supercapacitors. ACS Appl Mater Interfaces 8:12165–12175PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Liu Y, Gao T, Xiao H, Guo W, Sun B, Pei M, Zhou G (2017) One-pot synthesis of rice-like TiO2/graphene hydrogels as advanced electrodes for supercapacitors and the resulting aerogels as high-efficiency dye adsorbents. Electrochim Acta 229:239–252CrossRefGoogle Scholar
  34. 34.
    Varma S, Kumar K, Seal S, Rajaraman S, Thomas J (2018) Fiber-type solar cells, nanogenerators, batteries, and supercapacitors for wearable applications. Adv Sci 5:1800340CrossRefGoogle Scholar
  35. 35.
    Jiang W, Zhai S, Qian Q, Yuan Y, Karahan HE, Wei L, Goh K, Ng AK, Wei J, Chen Y (2016) Space-confined assembly of all-carbon hybrid fibers for capacitive energy storage: realizing built-to-order concept for micro-supercapacitors. Energy Environ Sci 9:611–622CrossRefGoogle Scholar
  36. 36.
    Que L, Wang Z, Yu F, Gu D (2016) 3D ultralong nanowire arrays with a tailored hydrogen titanate phase as binder-free anodes for Li-ion capacitors. J Mater Chem A 4:8716–8723CrossRefGoogle Scholar
  37. 37.
    Jaggessar A, Mathew A, Wang H, Tesfamichael T, Yan C, Yarlagadda P (2018) Mechanical, bactericidal and osteogenic behaviours of hydrothermally synthesised TiO2 nanowire arrays. J Mech Behav Biomed Mater 80:311–319PubMedCrossRefGoogle Scholar
  38. 38.
    Xiao M, Musselman K, Duley W, Zhou N (2017) Resistive switching memory of TiO2 nanowire networks grown on Ti foil by a single hydrothermal method. Nano-micro Lett 9:15–23CrossRefGoogle Scholar
  39. 39.
    Tian F, Zhang Y, Zhang J, Pan C (2012) Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J Phys Chem C 116:7515–7519CrossRefGoogle Scholar
  40. 40.
    Huo J, Wu J, Zheng M, Tu Y, Lan Z (2016) A transparent cobalt sulfide/reduced graphene oxide nanostructure counter electrode for high efficient dye-sensitized solar cells. Electrochim Acta 187:210–217CrossRefGoogle Scholar
  41. 41.
    Strauss V, Marsh K, Kowal M, El-Kady M, Kaner R (2018) A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv Mater 30:1704449CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jinghao Huo
    • 1
    • 2
    Email author
  • Yujia Xue
    • 1
  • Cheng Cheng
    • 1
  • Shouwu Guo
    • 1
    • 3
  1. 1.School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and TechnologyXi’anChina
  2. 2.Fujian Key Laboratory of Photoelectric Functional MaterialsHuaqiao UniversityXiamenChina
  3. 3.Department of Electronic Engineering, School of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations