Advertisement

Ionics

pp 1–8 | Cite as

The effects of K substitution on LiNi0.66Co0.20Mn0.14O2 for lithium-ion batteries

  • Mei Shang
  • Enshan HanEmail author
  • Yahong Tian
  • Lamei Sun
  • Lingzhi Zhu
Original Paper
  • 21 Downloads

Abstract

The high-nickel ternary cathode material LiNixCoyMn1-x-yO2 has high theoretical capacity and can be filled the power density requirement of a foot-powered car. It is placed on high expectations. However, Li/Ni mixing occurred during charging and discharging, resulting in poor cycle performance of the material. In this paper, spherical Ni0.66Co0.20Mn0.14(OH)2 precursor as prepared by co-precipitation. Then, well-ordered spherical [Li(1-x)Kx](Ni0.66Co0.20Mn0.14)O2 was synthesized. The effect of k substitution on the crystal structure and electrochemical properties of Li(Ni0.66Co0.20Mn0.14)O2 systematically by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), charge-discharge test, cyclic voltammetry (C–V) method, and electrochemical impedance spectroscopy (EIS) test. The initial discharge specific capacity of Li0.98K0.02Ni0.66Co0.20Mn0.14O2 is 202.0 mAh/g, 169.3 mAh/g, 138.8 mAh/g, and 117.8 mAh/g at 0.1 C, 0.2 C, 0.5 C, 1 C, respectively, which is higher than other materials. The [Li0.98K0.02](Ni0.66Co0.20Mn0.14)O2 shows the initial discharge capacity of 117.8 mAh/g with the capacity retention of 86.1% after 30 cycles at 1 C. It shows good cycle performance and rate performance. Results showed K substitution played an important role in the superior reversible capacity and good cycling performance of Li(Ni0.66Co0.20Mn0.14)O2.

Keywords

Co-precipitation [Li1-xKx](Ni0.66Co0.20Mn0.14)O2 High current density 

Notes

References

  1. 1.
    Stoyanova R, Zhecheva E, Alcántara R et al (2003) Lithium/nickel mixing in the transition metal layers of lithium nickelate: high-pressure synthesis of layered Li(LixNi1-x)O2 oxides as cathode materials for lithium-ion batteries[J]. Solid State Ionics 161(3):197–204CrossRefGoogle Scholar
  2. 2.
    Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRefGoogle Scholar
  3. 3.
    Liu J, Zhang J-G, Yang Z, Schwenzer JP et al (2013) Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid. Adv Funct Mater 23:929–946CrossRefGoogle Scholar
  4. 4.
    Schipper F, Erickson EM, Erk C et al (2016) Review recent advances and remaining challenges for lithium ion battery cathodes. J Electrochem Soc 164:A6220–A6228CrossRefGoogle Scholar
  5. 5.
    Armand J-MTM (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  6. 6.
    Antolini E (2004) LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behavior and transport properties. Solid State Ionics 170(3):159–171CrossRefGoogle Scholar
  7. 7.
    Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954CrossRefGoogle Scholar
  8. 8.
    Belov D, Yang MH (2008) Investigation of the kinetic mechanism in overcharge process for Li-ion battery. Solid State Ionics 179(27):1816–1821CrossRefGoogle Scholar
  9. 9.
    Belov D, Yang MH (2008) Failure mechanism of Li-ion battery at overcharge conditions. J Solid State Electrochem 12(7–8):885–894CrossRefGoogle Scholar
  10. 10.
    Doh CH, Kim DH, Kim HS et al (2008) Thermal and electrochemical behaviour of C/ LixCoO2 cell during safety test. J Power Sources 175(2):881–885CrossRefGoogle Scholar
  11. 11.
    Xu H, Ye X, Xiao C et al (2015) Synthesis and electrochemical performance of Mg-doped Li(Ni1/3Co1/3Mn1/3)1–xMgxO2 cathode material for lithium-ion battery[J]. Synth React Inorg M 45(2)Google Scholar
  12. 12.
    Dahn UVSJ, Michal C (1990) Rechargeable LiNiO2 carbon cells. Solid State Ionics 44:87CrossRefGoogle Scholar
  13. 13.
    J. Zheng, T. Liu, Z. Hu, . et al. Tuning of thermal stability in layered Li(NixMnyCoz)O2, J Am Chem Soc 138 (2016) 13326-13334.CrossRefGoogle Scholar
  14. 14.
    Makimura TOAY (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 30:642CrossRefGoogle Scholar
  15. 15.
    Manthiram A, Knight JC, Myung S-T, Oh S-M et al (2016) Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Eng Mater 6:1501010CrossRefGoogle Scholar
  16. 16.
    Liu W, Oh P, Liu X et al (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem 54:4440–4457CrossRefGoogle Scholar
  17. 17.
    Chen H, Dawson JA, Harding JH (2014) Effects of cationic substitution on structural defects in layered cathode materials LiNiO2. J Mater Chem A 2:7988CrossRefGoogle Scholar
  18. 18.
    Koyama Y, Arai H, Tanaka I et al (2012) Defect chemistry in layered LiMO2(M¼ Co, Ni, Mn, and Li1/3Mn2/3) by first-principles calculations. Chem Mater 24:3886–3894CrossRefGoogle Scholar
  19. 19.
    Makimura Y, Sasaki T, Nonaka T, Nishimura YF et al (2016) Factors affecting cycling life of LiNi0.8Co0.15Al0.05O2 for lithium ion batteries. J Mater Chem A 4:8350–8358CrossRefGoogle Scholar
  20. 20.
    Yu Z, Shang SL, Gordin ML et al (2015) Ti-substituted Li[Li0.26Mn0.6−xTixNi0.07Co0.07]O2 layered cathode material with improved structural stability and suppressed voltage fading[J]. J Mater Chem A:3Google Scholar
  21. 21.
    Thackeray M, Kang SH, Johnson CS et al (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries[J]. J Mater Chem 17(30):3112–3125CrossRefGoogle Scholar
  22. 22.
    Mi C, Han E, Li L, Zhu L et al (2018) Effect of iron doping on LiNi0.35Co0.30Mn0.35O2[J]. J Solid State Ionics 325:24–29CrossRefGoogle Scholar
  23. 23.
    Li JG, Wang L, Zhang Q, He XM (2009) Synthesis and characterization of LiNi0.6Mn0.4xCoxO2 as cathode materials for Li-ion batteries. J Power Sources 189:28–33CrossRefGoogle Scholar
  24. 24.
    Liao PY, Duh JG, Sheen SR (2005) Microstructure and electrochemical performance of LiNi0.6Co0.4xMnxO2 cathode materials. J Power Sources 143:212–218CrossRefGoogle Scholar
  25. 25.
    Chen Y, Wang GX, Liu KHK et al (2003) Synthesis and characterization of LiCoxMnyNi1-x-yO2 as a cathode material for secondary lithium batteries. J Power Sources 119–121:184–188CrossRefGoogle Scholar
  26. 26.
    Yue P, Wang ZX, Li XH et al (2013) The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution. Electrochim Acta 95:112–118CrossRefGoogle Scholar
  27. 27.
    Yue P, Wang ZX, Peng WJ, Li J et al (2011) Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its electrochemical performance as cathode materials for lithium ion batteries. Powder Technol 214:279–282CrossRefGoogle Scholar
  28. 28.
    Shi SJ, Tu JP, Tang YY et al (2013) Enhanced electrochemical performance of LiF-modifified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Power Sources 225:338–341CrossRefGoogle Scholar
  29. 29.
    Liang LW, Du K, Lu W et al (2014) Synthesis and characterization of LiNi0.6CoxMn0.4-xO2 (x = 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3) with high-electrochemical performance for lithium-ion batteries[J]. Electrochim Acta 146:207–217CrossRefGoogle Scholar
  30. 30.
    Du K, Huang JL, Cao YB et al (2013) Study of effects on LiNi0.8Co0.15Al0.05O2 cathode by LiNi1/3Co1/3Mn1/3O2 coating for lithium ion batteries[J]. J Alloys Compd 574:377–382CrossRefGoogle Scholar
  31. 31.
    Liu S, Wu H, Huang L, Xiang M et al (2016) Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries. J Alloys Compd 674:447–454CrossRefGoogle Scholar
  32. 32.
    Zhang G, Han E, Zhu L et al (2017) Synthesis and electrochemical properties of Li(Ni0.56Co0.19Mn0.24Al0.01)1-yAlyO2 as cathode material for lithium-ion batteries[J]. Ionics 23(9):2259–2267CrossRefGoogle Scholar
  33. 33.
    Wang D, Li X, Wang Z et al (2015) Improved high voltage electrochemical performance of Li2ZrO3-coated LiNi0.5Co0.2Mn0.3O2 cathode material [J]. J Alloys Compd 647:612–619CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mei Shang
    • 1
  • Enshan Han
    • 1
    Email author
  • Yahong Tian
    • 1
  • Lamei Sun
    • 1
  • Lingzhi Zhu
    • 1
  1. 1.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations