Advertisement

Ionics

pp 1–7 | Cite as

A composite membrane based on PTFE and solid poly (mixed acid (PMo12O40)X-(PO-OH)Y) for high-temperature fuel cells

  • Xiaojie Zhou
  • Mingqiang LiEmail author
Original Paper
  • 33 Downloads

Abstract

A novel high-temperature proton exchange membrane (PEM) (PTFE/(PMo12O40)X-(PO-OH)Y composite membranes) was prepared by impregnating mixed acid into the porous PTFE membrane. The porous PTFE membrane serves as the support structure of the membrane, and (PMo12O40)X-(PO-OH)Y sol is used as the proton conductor. The solid poly acid (PMo12O40)X-(PO-OH)Y exhibits a proton conductivity of 0.025 S cm−1 at 180 °C, and the PTFE/(PMo12O40)X-(PO-OH)Y membrane presents a good proton conductivity (0.02 S cm−1) when the relative humidity is below 0.5% and temperature is 180 °C. Besides, the PTFE/(PMo12O40)X-(PO-OH)Y membrane performs moderate property as tested in hydrogen fuel cells. SEM and EDX reveal that the structure of (PMo12O40)X-(PO-OH)Y gel is uniformly distributed in the pores of PTFE, which enhanced the proton conductivity of the composite membranes.

Keywords

PTFE (PMo12O40)X-(PO-OH)Y High-temperature PEMFC Proton conductivity 

Notes

Acknowledgements

This work was finished in Keith Scott Group of Newcastle University, UK.

References

  1. 1.
    Barbir F, Yazici S (2008) Status and development of PEM fuel cell technology. Int J Energy Res 32:369–378CrossRefGoogle Scholar
  2. 2.
    Schlapbach L (2009) Technology: hydrogen-fuelled vehicles. Nature 460:809–811CrossRefGoogle Scholar
  3. 3.
    Hou S et al (2015) Enhanced low-humidity performance in a proton exchange membrane fuel cell by the insertion of microcrystalline cellulose between the gas diffusion layer and the anode catalyst layer. Int J Hydrogen Energy 40:15613–15621CrossRefGoogle Scholar
  4. 4.
    Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51CrossRefGoogle Scholar
  5. 5.
    Barbir F (2005) PEM fuel cells theory and practice. Elsevier Academic Press, New YorkGoogle Scholar
  6. 6.
    Nalbant Y, Colpan CO, Devrim Y (2019) Energy and exergy performance assessments of a high temperature-proton exchange membrane fuel cell based integrated cogeneration system. Int J Hydrogen Energy onlineGoogle Scholar
  7. 7.
    Zhang L, Xie Z, Zhang J, Wilkinson, Liu Z, Holdcroft S (2006) High temperature PEM fuel cells. J Power Sources 160:872–891CrossRefGoogle Scholar
  8. 8.
    Li Q, He R, Jensen JO (2003) Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem Mater 15:4896–4915CrossRefGoogle Scholar
  9. 9.
    Ahmed DH, Sung HJ, Bae J (2008) Reactants flow behaviour and water management for different current densities in PEMFC. Int J Heat Mass Transf 51:2006–2019CrossRefGoogle Scholar
  10. 10.
    Velayutham G, Subramaniam CK, Rajalakshmi N, Dhathathreyan KS (2006) Effect of solvents on the characteristics of Nafion®/PTFE composite membranes for fuel cell applications. J Power Sources 160:10–17CrossRefGoogle Scholar
  11. 11.
    Yang C, Srinivasan S, Aricò A (2001) Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature. Electrochem Solid-State Lett 4:31–34CrossRefGoogle Scholar
  12. 12.
    Si Y, Kunz HR, Fenton JM (2004) Nafion-Teflon-Zr(HPO4)2 composite membranes for high-temperature PEMFCs. J Electrochem Soc 151(4):A623–A631CrossRefGoogle Scholar
  13. 13.
    Jung U, Park K, Park E (2006) Improvement of low-humidity performance of PEMFC by addition of hydrophilic SiO2 particles to catalyst layer. J Power Sources 159:529–532CrossRefGoogle Scholar
  14. 14.
    Pereira F, Vallé K, Belleville P (2008) Advanced mesostructured hybrid silica−Nafion membranes for high-performance PEM fuel cell. Chem Mater 205:1710–1718CrossRefGoogle Scholar
  15. 15.
    Adjemian KT, Srinvasan S, Benzigerb J (2002) Investigation of PEMFC operation above 100 °C employing perfluorosulfonic acid silicon oxide composite membranes. J Power Sources 109:343–356CrossRefGoogle Scholar
  16. 16.
    Li Q, Jensen JO, Savinell RF, Bjerrum NJ (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477CrossRefGoogle Scholar
  17. 17.
    Haque MA, Sulong AB, Loh KS (2017) Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: a review. Int J Hydrog Energy 42:9156–9179CrossRefGoogle Scholar
  18. 18.
    Heo P, Kajiyama N, Kobayashi K (2008) Proton conductor in Sn0.95Al0.05P2O7-PBI-PTFE composite membrane. Electrochem Solid State Lett 11:91–95CrossRefGoogle Scholar
  19. 19.
    Krishnan NN, Joseph D, Duong NH (2017) Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells. J Membr Sci 544:416–424CrossRefGoogle Scholar
  20. 20.
    Wang K, Yang L, Wei W (2018) Phosphoric acid-doped poly(ether sulfone benzotriazole) for high-temperature proton exchange membrane fuel cell applications. J Membr Sci 549:23–27CrossRefGoogle Scholar
  21. 21.
    Ma YL, Wainright JS, Litt MH, Savinell RF (2004) Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells. J Electrochem Soc 151:8–16CrossRefGoogle Scholar
  22. 22.
    Asensio JA, Borrós SR, Romero PG (2004) Proton-conducting membranes based on poly(2,5-benzimidazole) (ABPBI) and phosphoric acid prepared by direct acid casting. J Membr Sci 241:89–93CrossRefGoogle Scholar
  23. 23.
    Thomas S, Araya SS, Frensch SH (2019) Hydrogen mass transport resistance changes in a high temperature polymer membrane fuel cell as a function of current density and acid doping. Electrochim Acta 317:521–527CrossRefGoogle Scholar
  24. 24.
    Li M, Shao Z, Scott K (2008) A high conductivity Cs2.5H0.5PMo12O40/ polybenzimidazole (PBI)/H3PO4 composite membrane for proton-exchange membrane fuel cells operating at high temperature. J Power Sources 183:69–75CrossRefGoogle Scholar
  25. 25.
    Devrim Y, Devrim H, Eroglu I (2016) Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells. Int J Hydrog Energy 41:10044–10052CrossRefGoogle Scholar
  26. 26.
    Krishnan NN, Lee S, Ghorpade RV (2018) Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated TiO2 as both filler and crosslinker, and their use in the HT-PEM fuel cell. J Membr Sci 560:11–20CrossRefGoogle Scholar
  27. 27.
    Qin Q, Tang Q, Li Q (2014) Incorporation of H3PO4 into three-dimensional polyacrylamide-graft-starch hydrogel frameworks for robust high-temperature proton exchange membrane fuel cells. Int J Hydrog Energy 39:4447–4458CrossRefGoogle Scholar
  28. 28.
    Guisasola CG, Greus AR (2018) Dielectric relaxations and conductivity of cross-linked PVA/SSA/GO composite membranes for fuel cells. Polym Test 67:55–67CrossRefGoogle Scholar
  29. 29.
    Park Y, Jae-Dong K, Nagai M (2000) High proton conductivity in ZrP-PTFE composites. J Mater Sci Lett 19:1735CrossRefGoogle Scholar
  30. 30.
    Al-Othmanab A, Tremblaya AY, Pell W (2012) The effect of glycerol on the conductivity of Nafion-free ZrP/PTFE composite membrane electrolytes for direct hydrocarbon fuel cells. J Power Sources 199:14–21CrossRefGoogle Scholar
  31. 31.
    Al-Othmanab A, Tremblaya AY, Pell W (2013) A modified silicic acid (Si) and sulphuric acid (S)–ZrP/PTFE/glycerol composite membrane for high temperature direct hydrocarbon fuel cells. J Power Sources 224:158–167CrossRefGoogle Scholar
  32. 32.
    Al-Othman A, Zhu Y, Tawalbeh M (2017) Proton conductivity and morphology of new composite membranes based on zirconium phosphates, phosphotungstic acid, and silicic acid for direct hydrocarbon fuel cells applications. J Porous Mater 24:721–729CrossRefGoogle Scholar
  33. 33.
    Ganapathy S, Fournier M, Paul JF (2002) Location of protons in anhydrous Keggin heteropolyacids H3PMo12O40 and H3PW12O40 by 1H{31P}/31P{1H} REDOR NMR and DFT quantum chemical calculations. J Am Chem Soc 124:7821–7828CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringDalian University of TechnologyDalianChina

Personalised recommendations