Advertisement

Ionics

pp 1–13 | Cite as

Fabrication of LSCF and LSCF-GDC nanocomposite thin films using polymeric precursors

  • Can Sındıraç
  • Ali Ahsen
  • Osman Ozturk
  • Sedat Akkurt
  • Viola I. Birss
  • Aligul BuyukaksoyEmail author
Original Paper
  • 40 Downloads

Abstract

La1-xSrxCoyFe1-yO3 (LSCF) and LSCF-gadolinia-doped ceria (LSCF-GDC) composites are used as solid oxide fuel cell (SOFC) cathodes. In the present study, to maximize the LSCF/gas and LSCF/GDC interfacial area and thus enhance the performance, we fabricated both single-phase LSCF and composite LSCF-GDC thin-film electrodes using a facile and cost-effective polymeric precursor technique. This method involves molecular level mixing of cations in solution form and results in average particle sizes of ca. 72 nm and 60 nm upon annealing at 700 °C, respectively. For LSCF, electrochemical impedance spectroscopy measurements indicate very low electrode polarization resistances of ca. 0.6 Ω cm2 per electrode at 600 °C. However, the addition of GDC results in poorer electrochemical activity but better microstructural and electrochemical stability, all at 600 °C. Surface analysis revealed that Fe surface segregation occurs in the single-phase LSCF, while predominantly Co segregation is observed at the LSCF-GDC composite electrode surface.

Keywords

Solid oxide fuel cell Thin-film electrodes Impedance spectroscopy Long-term stability Surface composition 

Notes

Acknowledgements

The authors also thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Izmir Institute of Technology for the overall support of this research. Thanks are also due to Dr. Orhan Ozturk for his help with the XRD measurements.

Funding information

AB is financially supported by the Eyes High PDF program at the University of Calgary and Alberta Innovates – Technology Futures (AITF). This project was also partially supported by the Izmir Institute of Technology (BAP project number: 2015IYTE31).

References

  1. 1.
    Huijsmans J, Berkel FV, Christie G (1998) Intermediate temperature SOFC – a promise for the 21st century. J Power Sources 71:107–110.  https://doi.org/10.1016/s0378-7753(97)02789-4 CrossRefGoogle Scholar
  2. 2.
    Tarancón A (2009) Strategies for lowering solid oxide fuel cells operating temperature. Energies 2:1130–1150.  https://doi.org/10.3390/en20401130 CrossRefGoogle Scholar
  3. 3.
    Barnett S (1990) A new solid oxide fuel cell design based on thin film electrolytes. Energy 15:1–9.  https://doi.org/10.1016/0360-5442(90)90059-b CrossRefGoogle Scholar
  4. 4.
    Weber A, Ivers-Tiffée E (2004) Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. J Power Sources 127:273–283.  https://doi.org/10.1016/j.jpowsour.2003.09.024 CrossRefGoogle Scholar
  5. 5.
    Stambouli AB, Traversa E (2002) Fuel cells, an alternative to standard sources of energy. Renew Sust Energ Rev 6:295–304.  https://doi.org/10.1016/s1364-0321(01)00015-6 CrossRefGoogle Scholar
  6. 6.
    Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104:4791–4844.  https://doi.org/10.1021/cr020724o CrossRefPubMedGoogle Scholar
  7. 7.
    Chen C, Bouwmeester HJM, Kruidhof H, Elshof JET, Burggraaf AJ (1996) Fabrication of La1 –xSrxCoO3 –δthin layers on porous supports by a polymeric sol–gel process. J Mater Chem 6:815–819.  https://doi.org/10.1039/jm9960600815 CrossRefGoogle Scholar
  8. 8.
    Beckel D, Bieberle-Hütter A, Harvey A, Infortuna A, Muecke U, Prestat M, Rupp J, Gauckler L (2007) Thin films for micro solid oxide fuel cells. J Power Sources 173:325–345.  https://doi.org/10.1016/j.jpowsour.2007.04.070 CrossRefGoogle Scholar
  9. 9.
    Kharton V, Marques F, Atkinson A (2004) Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics 174:135–149.  https://doi.org/10.1016/j.ssi.2004.06.015 CrossRefGoogle Scholar
  10. 10.
    Nielsen J, Jacobsen T, Wandel M (2011) Impedance of porous IT-SOFC LSCF:CGO composite cathodes. Electrochim Acta 56:7963–7974.  https://doi.org/10.1016/j.electacta.2011.05.042 CrossRefGoogle Scholar
  11. 11.
    Bieberle-Hütter A, Beckel D, Infortuna A, Muecke UP, Rupp JL, Gauckler LJ, Rey-Mermet S, Muralt P, Bieri NR, Hotz N, Stutz MJ, Poulikakos D, Heeb P, Müller P, Bernard A, Gmür R, Hocker T (2008) A micro-solid oxide fuel cell system as battery replacement. J Power Sources 177:123–130.  https://doi.org/10.1016/j.jpowsour.2007.10.092 CrossRefGoogle Scholar
  12. 12.
    Vohs JM, Gorte RJ (2009) High-Performance SOFC Cathodes Prepared by Infiltration. Adv Mater 21:943–956.  https://doi.org/10.1002/adma.200802428 CrossRefGoogle Scholar
  13. 13.
    Jiang SP (2012) Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges. Int J Hydrog Energy 37:449–470.  https://doi.org/10.1016/j.ijhydene.2011.09.067 CrossRefGoogle Scholar
  14. 14.
    Murray EP, Sever MJ, Barnett SA (2002) Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O2 composite cathodes. Solid State Ionics 148:27–34. doi:  https://doi.org/10.1016/s0167-2738(02)00102-9 CrossRefGoogle Scholar
  15. 15.
    Dusastre V, Kilner J (1999) Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics 126:163–174.  https://doi.org/10.1016/s0167-2738(99)00108-3 CrossRefGoogle Scholar
  16. 16.
    Bebelis S, Kotsionopoulos N, Mai A, Tietz F (2006) Electrochemical characterization of perovskite-based SOFC cathodes. J Appl Electrochem 37:15–20.  https://doi.org/10.1007/s10800-006-9215-y CrossRefGoogle Scholar
  17. 17.
    Liu M, Ding D, Blinn K, Li X, Nie L, Liu M (2012) Enhanced performance of LSCF cathode through surface modification. Int J Hydrog Energy 37:8613–8620.  https://doi.org/10.1016/j.ijhydene.2012.02.139 CrossRefGoogle Scholar
  18. 18.
    Wang W, Mogensen M (2005) High-performance lanthanum-ferrite-based cathode for SOFC. Solid State Ionics 176:457–462.  https://doi.org/10.1016/j.ssi.2004.09.007 CrossRefGoogle Scholar
  19. 19.
    Leng Y, Chan S, Liu Q (2008) Development of LSCF–GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte. Int J Hydrog Energy 33:3808–3817.  https://doi.org/10.1016/j.ijhydene.2008.04.034 CrossRefGoogle Scholar
  20. 20.
    Tomov RI, Mitchell-Williams T, Gao C, Kumar RV, Glowacki BA (2017) Performance optimization of LSCF/Gd:CeO2 composite cathodes via single-step inkjet printing infiltration. J Appl Electrochem 47:641–651.  https://doi.org/10.1007/s10800-017-1066-1 CrossRefGoogle Scholar
  21. 21.
    Chrzan A, Karczewski J, Gazda M, Szymczewska D, Jasinski P (2017) La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ oxygen electrodes for solid oxide cells prepared by polymer precursor and nitrates solution infiltration into gadolinium doped ceria backbone. J Eur Ceram Soc 37:3559–3564.  https://doi.org/10.1016/j.jeurceramsoc.2017.04.032 CrossRefGoogle Scholar
  22. 22.
    Shah M, Barnett S (2008) Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3−δ into Gd-doped ceria. Solid State Ionics 179:2059–2064.  https://doi.org/10.1016/j.ssi.2008.07.002 CrossRefGoogle Scholar
  23. 23.
    Liu Y, Wang F, Chi B, Pu J, Jian L, Jiang SP (2013) A stability study of impregnated LSCF–GDC composite cathodes of solid oxide fuel cells. J Alloys Compd 578:37–43.  https://doi.org/10.1016/j.jallcom.2013.05.021 CrossRefGoogle Scholar
  24. 24.
    Shah M, Voorhees PW, Barnett SA (2011) Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: The role of nano-particle coarsening. Solid State Ionics 187:64–67.  https://doi.org/10.1016/j.ssi.2011.02.003 CrossRefGoogle Scholar
  25. 25.
    Kim JH, Kim H (2012) Ce0.9Gd0.1O1.95 supported La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes for solid oxide fuel cells. Ceram Int 38:4669–4675.  https://doi.org/10.1016/j.ceramint.2012.02.049 CrossRefGoogle Scholar
  26. 26.
    Burye TE, Nicholas JD (2015) Improving La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3−δ infiltrated solid oxide fuel cell cathode performance through precursor solution desiccation. J Power Sources 276:54–61.  https://doi.org/10.1016/j.jpowsour.2014.11.082 CrossRefGoogle Scholar
  27. 27.
    Burye TE, Nicholas JD (2016) Precursor solution additives improve desiccated La0.6Sr0.4Co0.8Fe0.2O3–x infiltrated solid oxide fuel cell cathode performance. J Power Sources 301:287–298.  https://doi.org/10.1016/j.jpowsour.2015.10.012 CrossRefGoogle Scholar
  28. 28.
    Nie L, Liu M, Zhang Y, Liu M (2010) La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells. J Power Sources 195:4704–4708.  https://doi.org/10.1016/j.jpowsour.2010.02.049 CrossRefGoogle Scholar
  29. 29.
    Gauckler LJ, Beckel D, Buergler BE, Jud E, Muecke UP, Prestat M, Rupp JL, Richter J (2004) Solid oxide fuel cells: systems and materials. CHIMIA Int J Chem 58:837–850.  https://doi.org/10.2533/000942904777677047 CrossRefGoogle Scholar
  30. 30.
    Buyukaksoy A, Birss VI (2016) Highly active nanoscale Ni - Yttria stabilized zirconia anodes for micro-solid oxide fuel cell applications. J Power Sources 307:449–453.  https://doi.org/10.1016/j.jpowsour.2015.12.022 CrossRefGoogle Scholar
  31. 31.
    Ralph JM, Cécile R, Kumar R (2003) Cathode materials for reduced-temperature SOFCs. J Electrochem Soc.  https://doi.org/10.1149/1.1617300 CrossRefGoogle Scholar
  32. 32.
    Plonczak P, Søgaard M, Bieberle-Hütter A, Hendriksen PV, Gauckler LJ (2012) Electrochemical characterization of La0.58Sr0.4Co0.2Fe0.8O3−δ thin films electrodes prepared by pulsed laser deposition. J Electrochem Soc 159:B471.  https://doi.org/10.1149/2.100205jes CrossRefGoogle Scholar
  33. 33.
    Lee J-W, Liu Z, Yang L, Abernathy H, Choi S-H, Kim H-E, Liu M (2009) Preparation of dense and uniform La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) films for fundamental studies of SOFC cathodes. J Power Sources 190:307–310.  https://doi.org/10.1016/j.jpowsour.2009.01.090 CrossRefGoogle Scholar
  34. 34.
    Beckel D, Muecke U, Gyger T, Florey G, Infortuna A, Gauckler L (2007) Electrochemical performance of LSCF based thin film cathodes prepared by spray pyrolysis. Solid State Ionics 178:407–415.  https://doi.org/10.1016/j.ssi.2007.01.019 CrossRefGoogle Scholar
  35. 35.
    Angoua BF, Slamovich EB (2012) Single solution spray pyrolysis of La0.6Sr0.4Co0.2Fe0.8O3−δ–Ce0.8Gd0.2O1.9 (LSCF–CGO) thin film cathodes. Solid State Ionics 212:10–17.  https://doi.org/10.1016/j.ssi.2012.02.015 CrossRefGoogle Scholar
  36. 36.
    Celikbilek Ӧ, Jauffrès D, Siebert E, Dessemond L, Burriel M, Martin CL, Djurado E (2016) Rational design of hierarchically nanostructured electrodes for solid oxide fuel cells. J Power Sources 333:72–82.  https://doi.org/10.1016/j.jpowsour.2016.09.156 CrossRefGoogle Scholar
  37. 37.
    Marinha D, Dessemond L, Djurado E (2012) Electrochemical investigation of oxygen reduction reaction on La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes deposited by electrostatic spray deposition. J Power Sources 197:80–87.  https://doi.org/10.1016/j.jpowsour.2011.09.049 CrossRefGoogle Scholar
  38. 38.
    Celikbilek O, Jauffres D, Dessemond L, Burriel M, Martin CL, Djurado E (2016) A Coupled experimental/numerical approach for tuning high-performing SOFC-Cathode. ECS Trans 72:81–92.  https://doi.org/10.1149/07207.0081ecst CrossRefGoogle Scholar
  39. 39.
    Prestat M, Koenig J-F, Gauckler LJ (2007) Oxygen reduction at thin dense La0.52Sr0.48Co0.18Fe0.82O3–δ electrodes. J Electroceram 18:87–101.  https://doi.org/10.1007/s10832-007-9012-y CrossRefGoogle Scholar
  40. 40.
    Prestat M, Infortuna A, Korrodi S, Rey-Mermet S, Muralt P, Gauckler LJ (2007) Oxygen reduction at thin dense La0.52Sr0.48Co0.18Fe0.82O3–δ electrodes. J Electroceram 18:111–120.  https://doi.org/10.1007/s10832-007-9021-x CrossRefGoogle Scholar
  41. 41.
    Anderson H. U., C. C. Chen and M. M. Nasrallah, U. S. Patent No.5, 494, 700, Feb. 1996.Google Scholar
  42. 42.
    Buyukaksoy A, Kammampata SP, Birss VI (2015) Effect of porous YSZ scaffold microstructure on the long-term performance of infiltrated Ni-YSZ anodes. J Power Sources 287:349–358.  https://doi.org/10.1016/j.jpowsour.2015.04.072 CrossRefGoogle Scholar
  43. 43.
    Darbandi AJ, Hahn H (2009) Nanoparticulate cathode thin films with high electrochemical activity for low temperature SOFC applications. Solid State Ionics 180:1379–1387.  https://doi.org/10.1016/j.ssi.2009.07.010 CrossRefGoogle Scholar
  44. 44.
    Mineshige A, Izutsu J, Nakamura M, Nigaki K, Abe J, Kobune M, Fujii S, Yazawa T (2005) Introduction of A-site deficiency into La0.6Sr0.4Co0.2Fe0.8O3–δ and its effect on structure and conductivity. Solid State Ionics 176:1145–1149.  https://doi.org/10.1016/j.ssi.2004.11.021 CrossRefGoogle Scholar
  45. 45.
    Zhou W, Ran R, Shao Z, Zhuang W, Jia J, Gu H, Jin W, Xu N (2008) Barium- and strontium-enriched (Ba0.5Sr0.5)1 xCo0.8Fe0.2O3−δ oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells. Acta Mater 56:2687–2698.  https://doi.org/10.1016/j.actamat.2008.02.002 CrossRefGoogle Scholar
  46. 46.
    Gordes P, Christiansen N, Jensen EJ, Villadsen J (1995) Synthesis of perovskite-type compounds by drip pyrolysis. J Mater Sci 30:1053–1058.  https://doi.org/10.1007/bf01178444 CrossRefGoogle Scholar
  47. 47.
    Angoua BF, Cantwell PR, Stach EA, Slamovich EB (2011) Crystallization and electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3−δ-Ce0.8Gd0.2O1.9 thin film cathodes processed by single solution spray pyrolysis. Solid State Ionics 203:62–68.  https://doi.org/10.1016/j.ssi.2011.08.017 CrossRefGoogle Scholar
  48. 48.
    Molero-Sánchez B, Addo P, Buyukaksoy A, Birss V (2017) Performance enhancement of La0.3Ca0.7Fe0.7Cr0.3O3-δAir electrodes by infiltration methods. J Electrochem Soc.  https://doi.org/10.1149/2.0151710jes CrossRefGoogle Scholar
  49. 49.
    Molero-Sánchez B, Addo P, Buyukaksoy A, Paulson S, Birss V (2015) Electrochemistry of La0.3Sr0.7Fe0.7Cr0.3O3−δ as an oxygen and fuel electrode for RSOFCs. Faraday Discuss 182:159–175.  https://doi.org/10.1039/c5fd00029g CrossRefPubMedGoogle Scholar
  50. 50.
    Reddy KR, Karan K (2005) Sinterability, mechanical, microstructural, and electrical properties of gadolinium-doped ceria electrolyte for low-temperature solid oxide fuel cells. J Electroceram 15:45–56.  https://doi.org/10.1007/s10832-005-1099-4 CrossRefGoogle Scholar
  51. 51.
    Simner SP, Anderson MD, Engelhard MH, Stevenson JW (2006) Degradation Mechanisms of La–Sr–Co–Fe–O3 SOFC Cathodes. Electrochem Solid-State Lett.  https://doi.org/10.1149/1.2266160 CrossRefGoogle Scholar
  52. 52.
    Vovk G, Chen X, Mims CA (2005) In situ XPS studies of perovskite oxide surfaces under electrochemical polarization. J Phys Chem B 109:2445–2454.  https://doi.org/10.1021/jp0486494 CrossRefPubMedGoogle Scholar
  53. 53.
    Lee W, Yildiz B (2013) Factors that influence cation segregation at the surfaces of perovskite oxides. ECS Trans 57:2115–2123.  https://doi.org/10.1149/05701.2115ecst CrossRefGoogle Scholar
  54. 54.
    Cai Z, Kubicek M, Fleig J, Yildiz B (2012) Chemical heterogeneities on La0.6Sr0.4CoO3−δ thin films—correlations to cathode surface activity and stability. Chem Mater 24:1116–1127.  https://doi.org/10.1021/cm203501u CrossRefGoogle Scholar
  55. 55.
    Lee W, Han JW, Chen Y, Cai Z, Yildiz B (2013) Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J Am Chem Soc 135:7909–7925.  https://doi.org/10.1021/ja3125349 CrossRefPubMedGoogle Scholar
  56. 56.
    Liu Y, Chen J, Wang F, Chi B, Pu J, Jian L (2014) Performance stability of impregnated La0.6Sr0.4Co0.2Fe0.8O3−δ–Y2O3 stabilized ZrO2 cathodes of intermediate temperature solid oxide fuel cells. Int J Hydrog Energy 39:3404–3411.  https://doi.org/10.1016/j.ijhydene.2013.12.073 CrossRefGoogle Scholar
  57. 57.
    Dieterle L, Bockstaller P, Gerthsen D, Hayd J, Ivers-Tiffée E, Guntow U (2011) Microstructure of nanoscaled La0.6Sr0.4CoO3-δ cathodes for intermediate-temperature solid oxide fuel cells. Adv Energy Mater 1:249–258.  https://doi.org/10.1002/aenm.201000036 CrossRefGoogle Scholar
  58. 58.
    Zhang T, Ma J, Kong L, Chan S, Hing P, Kilner JA (2004) Iron oxide as an effective sintering aid and a grain boundary scavenger for ceria-based electrolytes. Solid State Ionics 167:203–207.  https://doi.org/10.1016/j.ssi.2004.01.006 CrossRefGoogle Scholar
  59. 59.
    Mazan MO, Marrero-Jerez J, Soldati A, Núñez P, Larrondo SA (2015) Fe-doped ceria nanopowders synthesized by freeze-drying precursor method for electrocatalytic applications. Int J Hydrog Energy 40:3981–3989.  https://doi.org/10.1016/j.ijhydene.2015.01.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Can Sındıraç
    • 1
  • Ali Ahsen
    • 2
    • 3
  • Osman Ozturk
    • 2
    • 3
  • Sedat Akkurt
    • 1
  • Viola I. Birss
    • 4
  • Aligul Buyukaksoy
    • 4
    • 5
    Email author
  1. 1.Department of Mechanical EngineeringIzmir Institute of TechnologyİzmirTurkey
  2. 2.Department of PhysicsGebze Technical UniversityKocaeliTurkey
  3. 3.Institute of NanotechnologyGebze Technical UniversityKocaeliTurkey
  4. 4.Department of ChemistryUniversity of CalgaryCalgaryCanada
  5. 5.Department of Materials Science and EngineeringGebze Technical UniversityKocaeliTurkey

Personalised recommendations