pp 1–10 | Cite as

Performance dependence of electrochemical capacitor on surface morphology for vertically aligned graphene nanosheets

  • Monalisa GhoshEmail author
  • Apurba Ray
  • G. Mohan Rao
Original Paper


“Vertically aligned graphene nanosheets” are a type of graphitic carbon nanostructure with an interconnected network of perpendicularly aligned graphene nanosheets. In this study, the thin films of this material are deposited on stainless steel substrates using electron cyclotron resonance–based plasma-enhanced chemical vapor deposition. The variation of the electrochemical performance of the vertically aligned graphene nanosheets with the change in surface morphology is analyzed. The samples with different surface geometries offer different values of specific capacitances. The sample with nanopores between the graphene nanosheets of largest diameter and of most open nature delivers the highest specific electrode capacitance of 0.98 mF cm−2 (11.09 F cm−3) at a current density 0.88 mA cm−2 while the corresponding value for the sample with the smallest gap between nanosheets is of 0.49 mF cm−2 (6.67 F cm−3). The results point out at a direct correlation between surface morphology and electrochemical performance of the material.


Electrochemical capacitors Carbon nanostructure Graphene Vertical alignment ECR plasma 



A part of this research is performed using Micro and Nano Characterisation Facilities (MNCF) at Centre of Nanoscience and Engineering (CeNSE), Indian Institute of Science, Bangalore, India.

Authors’ contributions

Conceived the plan: MG, GMR; performed the experiments: MG; data analysis: MG, AR; wrote the paper: MG, GMR.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Plenum Publishers, New York, USACrossRefGoogle Scholar
  2. 2.
    Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269. CrossRefGoogle Scholar
  3. 3.
    Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes-a review. J Mater 2:37–54. Google Scholar
  4. 4.
    Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498. CrossRefGoogle Scholar
  5. 5.
    Gong J, Tian Y, Yang Z, Wang Q, Hong X, Ding Q (2018) High-performance flexible all-solid-state ssymmetric supercapacitors based on vertically aligned CuSe@Co(OH)2 nanosheet arrays. J Phys Chem C 122:2002–2011. CrossRefGoogle Scholar
  6. 6.
    Gong J, Li J, Yang J, Zhao S, Yang Z, Zhang K, Bao J, Pang H, Han M (2018) High-performance flexible in-plane micro-supercapacitors based on vertically aligned CuSe@Ni(OH)2 hybrid nanosheet films. ACS Appl Mater Interfaces 10:38341–38349. CrossRefGoogle Scholar
  7. 7.
    Chen J, Bo Z, Lu G (2015) Vertically-oriented graphene: PECVD synthesis and applications. Springer, Switzerland. CrossRefGoogle Scholar
  8. 8.
    Bo Z, Mao S, Han ZJ, Cen K, Chen J, Ostrikov K (2015) Emerging energy and environmental applications of vertically-oriented graphene. Chem Soc Rev 44:2108–2121. CrossRefGoogle Scholar
  9. 9.
    Zhang Z, Lee CS, Zhang W (2017) Vertically aligned graphene nanosheet arrays: synthesis, properties, and applications in electrochemical energy conversion and storage. Adv Energy Mater 1700678:20pp. Google Scholar
  10. 10.
    Zhao X, Tian H, Zhu M, Tian K, Wang JJ, Kang F, Outlaw RA (2009) Carbon nanosheets as the electrode material in supercapacitors. J Power Sources 194:1208–1212. CrossRefGoogle Scholar
  11. 11.
    Bo Z, Wen Z, Kim H, Lu G, Yu K, Chen J (2012) One-step fabrication and capacitive behaviour of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon 50:4379–4387. CrossRefGoogle Scholar
  12. 12.
    Aradilla D, Delaunay M, Sadki S, Gerard JM, Bidan G Vertically aligned graphene nanosheets on silicon using an ionic liquid electrolyte: towards high-performance on-chip micro-supercapacitors. J Mater Chem A 3(2015):19254–19262.
  13. 13.
    D. Premathilake, R. A. Outlaw, S. G. Parler, S. M. Butler, J. R. Miller, Electric double layer capacitors for ac filtering made from vertically oriented graphene nanosheets on aluminium. Carbon . 111 (2017) 231–237. DOI:
  14. 14.
    Miller JR, Outlaw RA, Holloway BC (2010) Graphene double layer capacitor with ac line-filtering performance. Science 329:1637–1639. CrossRefGoogle Scholar
  15. 15.
    Miller JR, Outlaw RA, Holloway BC (2011) Graphene electric double layer capacitor with ultra high-power performance. Electrochim Acta 56:10443–10449. CrossRefGoogle Scholar
  16. 16.
    Cai M, Outlaw RA, Butler SM, Miller JR (2012) A high density of vertically-oriented graphenes for use in electric double layer capacitors. Carbon N Y 50:5481–5488. CrossRefGoogle Scholar
  17. 17.
    Ren G, Pan X, Bayne S, Fan Z (2014) Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam, 94–101. Carbon 71.
  18. 18.
    Cai M, Outlaw RA, Quinlan RA, Premathilake D, Butler SM, Miller JR (2014) Fast response, vertically oriented graphene nanosheet electric double layer capacitors synthesized from C2H2. ACS Nano 8:5873–5882. CrossRefGoogle Scholar
  19. 19.
    Sahoo G, Polaki SR, Ghosh S, Krishna NG, Kamruddin M (2018) Temporal-stability of plasma functionalized vertical graphene electrodes for charge storage. J Power Sources 401:37–48. CrossRefGoogle Scholar
  20. 20.
    Xiong G, Hembram KPSS, Reifenberger RG, Fisher TS (2013) MnO2-coated graphitic petals for supercapacitor electrodes. J Power Sources 227:254–259. CrossRefGoogle Scholar
  21. 21.
    Xiong G, Meng C, Reifenberger RG, Irazoqui PP, Fisher TS (2014) Graphitic petal electrodes for all-solid-state flexible supercapacitors. Adv Energy Mater 4:1300515 (9 pages). CrossRefGoogle Scholar
  22. 22.
    Chang H-C, Chang H-Y, Su W-J, Lee K-Y, Shih W-C (2012) Preparation and electrochemical characterization of NiO nanostructure-carbon nanowall composites grown on carbon cloth. Appl Surf Sci 258:8599–8602. CrossRefGoogle Scholar
  23. 23.
    Seo DH, Han ZJ, Kumar S, Ostrikov K (2013) Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance, 1316–1323. Adv Energy Mater 3.
  24. 24.
    Q. Liao, N. Li, H. Cui, C. Wang, Vertically-aligned graphene@MnO nanosheets as binder-free high-performance electrochemical pseudocapacitor electrodes, Journal of Material Chemistry A 1 (2013) 13715–13720. DOI:
  25. 25.
    Liao Q, Li N, Jin S, Yang G, Wang C (2015) All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9:5310–5317. CrossRefGoogle Scholar
  26. 26.
    Ma B, Zhou X, Bao H, Li X, Wang G (2012) Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods for high-performance supercapacitors. J Power Sources 215:36–42. CrossRefGoogle Scholar
  27. 27.
    Ghosh M, Anand V, Rao Gowravaram M (2018) Wetting characteristics of vertically aligned graphene nanosheets. Nanotechnology 29(385703):7pp. Google Scholar
  28. 28.
    Ghosh M, Venkatesh G, Mohan Rao G (2016) Surface modification of vertically aligned graphene nanosheets by microwave assisted etching for application as anode of lithium ion battery. Solid State Ionics 296:31–36. CrossRefGoogle Scholar
  29. 29.
    Deenamma KV, Rao GM (2000) Electron cyclotron resonance plasma source for ion assisted deposition of thin films. Rev Sci Instrum 71.
  30. 30.
    Thomas R, Rao KY, Rao GM (2013) Morphology and electrochemical performance of graphene nanosheet array for Li-ion thin film battery. Electrochim Acta 108:458–464. CrossRefGoogle Scholar
  31. 31.
    Thomas R, Mohan Rao G (2015) Synthesis of 3-dimensional porous graphene nanosheets using electron cyclotron resonance plasma enhanced chemical vapor deposition. RSC Adv 5:84927–84935. CrossRefGoogle Scholar
  32. 32.
    Sykam N, Ghosh M, Rao GM (2018) Exfoliated graphite containing metal oxides for high-performance pseudocapacitor applications. J Alloys Compd 769:274–281. CrossRefGoogle Scholar
  33. 33.
    B. Kim, H. Chung, W. Kim High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes, Nanotechnology 23 (2012) 155401 (8pp). DOI:
  34. 34.
    Lin Y, Zhang H, Deng W, Zhang D, Li N, Wu Q, He C (2018) In-situ growth of high-performance all-solid-state electrode for flexible supercapacitors based on carbon woven fabric/ polyaniline/ graphene composite. J Power Sources 384:278–286. CrossRefGoogle Scholar
  35. 35.
    M. A. MacDonald, H.. Andreas, Method for equivalent circuit determination for electrochemical impedance spectroscopy data of protein adsorption on solid surfaces, Electrochimica Acta 129 (2014) 290–299. DOI:
  36. 36.
    Ghosh S, Mathews T, Gupta B, Das A, Krishna NG, Kamruddin M (2017) Supercapacitive vertical graphene nanosheets in aqueous electrolytes. Nano-Struct Nano-Objects 10:42–50. CrossRefGoogle Scholar
  37. 37.
    Roy A, Ray A, Saha S, Ghosh M, Das T, Satpati B, Nandi M, Das S (2018) NiO-CNT composite for high-performance supercapacitor electrode and oxygen evolution reaction. Electrochim Acta 283.
  38. 38.
    Portet C, Taberna PL, Simon P, Laberty-Robert C (2004) Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications. Electrochim Acta 49:905–912. CrossRefGoogle Scholar
  39. 39.
    Ray A, Roy A, Ghosh M, Ramos-Ramón JA, Saha S, Pal U, Bhattacharya SK, Das S (2019) Study on charge storage mechanism in working electrodes fabricated by sol-gel derived spinel NiMn2O4nanoparticles for supercapacitor application. Appl Surf Sci 463:513–552. CrossRefGoogle Scholar
  40. 40.
    Wu Y, Yang B (2002) Effects of localized electric field on the growth of carbon nanowalls. Nano Lett 2:355–359. CrossRefGoogle Scholar
  41. 41.
    Zhao J, Shaygan M, Eckert J, Meyyappan M, Rümmeli MH (2014) A growth mechanism for free-standing vertical graphene. Nano Lett 14:3064–3071. CrossRefGoogle Scholar
  42. 42.
    Song H, Li N, Cui H, Wang C (2014) Enhanced storage capability and kinetic processes by pores- and hetero-atoms- riched carbon nanobubbles for lithium-ion and sodium-ion batteries anodes. Nano Energy 4:81–87. CrossRefGoogle Scholar
  43. 43.
    Song H, Su J, Wang C (2019) In situ subangstrom thick organic engineering enables mono-scale, ultrasmall ZnO nanocrystals for a high initial coulombic efficiency, fully reversible conversion, and cycle-stable Li-ion storage. Adv Energy Mater 9(1-8):1900426CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instrumentation and Applied PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Instrumentation ScienceJadavpur UniversityKolkataIndia

Personalised recommendations