pp 1–20 | Cite as

High selective heterogeneous cation exchange membrane modified by l-cysteine with enhanced electrochemical performance

  • E. Jashni
  • S. M. HosseiniEmail author
Original Paper


This research focuses on the formation of ionic clusters and the transport properties of metal ions through electrodialysis heterogeneous cation exchange membrane modified by l-cysteine as a polar additive. The molecular electrostatic potential of l-Cyst and resin particle showed appropriate reactive sites for electrophilic and nucleophilic attacks. Furthermore, the calculated interaction energy confirmed the presence of strong interactions between the l-Cyst molecule and the resin particle. Elemental mapping, scanning electron microscopy (SEM), and scanning optical microscopy (SOM) images of the blended membranes represented a relatively uniform surface and particle distribution. Membrane water uptake and surface hydrophilicity were enhanced in the presence of l-Cyst. The blended membranes demonstrated high selectivity (> 99%), lower electrical resistance (< 5–6 Ω cm2), and better ionic permeability compared to the bare membrane. The blended membranes (HCEM–2.0 wt% l-Cyst) showed higher dialytic rate, lower energy consumption, and current efficiency in Pb2+ ion removal from water compared to the bare sample.


Cation exchange membranes Ionic clusters l-Cysteine Intensified electrochemical property Lead ion removal 


Funding information

The authors gratefully acknowledge Arak University for the financial support during this research.


  1. 1.
    Zhang DY, Hao Q, Liu J, Shi YS, Zhu J, Su L, Wang Y (2018) Antifouling polyimide membrane with grafted silver nanoparticles and zwitterion, separation and purification technology. Sep Purif Technol 192:230–239CrossRefGoogle Scholar
  2. 2.
    Xu GR, Xu JM, Su HC, Liu XY, Li L, Zhao HL, Feng HJ, Das R (2019) Two-dimensional (2D) nanoporous membranes with sub-nanoporous in reverse osmosis desalination: latest developments and future directions. Desalination 451:18–34CrossRefGoogle Scholar
  3. 3.
    Luo F, Wang Y, Jiang C, Wu B, Feng H, Xu T (2017) A power free electrodialysis (PFED) for desalination. Desalination 404:138–146CrossRefGoogle Scholar
  4. 4.
    Mondal AN, Zheng C, Cheng C, Miao J, Hossain MM, Emmanuel K, Khan MI, Afsar NU, Ge L, Wu L, Xu T (2016) Novel silica-functionalized aminoisophthalic acid-based membranes for base recovery via diffusion dialysis. J Membr Sci 507:90–98CrossRefGoogle Scholar
  5. 5.
    Babilas D, Dydo P (2018) Selective zinc recovery from electroplating wastewaters by electrodialysis enhanced with complex formation. Sep Purif Technol 192:419–428CrossRefGoogle Scholar
  6. 6.
    Malek P, Ortiz JM, Herbruggen HMAS (2016) Decentralized desalination of brackish water using an electrodialysis system directly powered by wind energy. Desalination 377:54–64CrossRefGoogle Scholar
  7. 7.
    Han L, Galier S, Balmann HR (2016) Transfer of neutral organic solutes during desalination by electrodialysis: influence of the salt composition. J Membr Sci 511:207–218CrossRefGoogle Scholar
  8. 8.
    Bakangura E, Wu L, Ge L, Yang Z, Xu T (2016) Mixed matrix proton exchange membranes for fuel cells: state of the art and perspectives. Prog Polym Sci 57:103–152CrossRefGoogle Scholar
  9. 9.
    Ran J, Wu L, He Y, Yang Z, Wang Y, Jiang C, Ge L, Bakangura E, Xu T (2017) Ion exchange membranes: new developments and applications. J Membr Sci 522:267–291CrossRefGoogle Scholar
  10. 10.
    Vogel C, Haack JM (2014) Preparation of ion-exchange materials and membranes. Desalination 342:156–174CrossRefGoogle Scholar
  11. 11.
    Yee RSL, Rozendal RA, Zhang K, Ladewig BP (2012) Cost effective cation exchange membranes: a review. Chem Eng Res Des 90:950–959CrossRefGoogle Scholar
  12. 12.
    Kononenko N, Nikonenko V, Grande D, Larchet C, Dammak L, Fomenko M, Volfkovich Y (2017) Porous structure of ion exchange membranes investigated by various techniques. Adv Colloid Interf Sci 246:196–216CrossRefGoogle Scholar
  13. 13.
    Bagbi Y, Sarswat A, Mohan D, Pandey A, Solanki PR (2017) Lead and chromium adsorption from water using L-cysteine functionalized magnetite (Fe3O4) nanoparticles. Sci Rep 7Google Scholar
  14. 14.
    Javan MB, Soltani A, Lemeski ET, Ahmadi A, Moazen Rad S (2016) Interaction of B12N12 nano-cage with cysteine through various functionalities: a DFT study. Superlattice Microst 100:24–37CrossRefGoogle Scholar
  15. 15.
    Efome JE, Rana D, Matsuura T, Lan CQ (2018) Experiment and modeling for flux and permeate concentration of heavy metal ion in adsorptive membrane filtration using a metal-organic framework incorporated nanofibrous membrane. Chem Eng J 352:737–744CrossRefGoogle Scholar
  16. 16.
    Efome JE, Rana D, Matsuura T, Lan CQ (2019) Effects of operating parameters and coexisting ions on the efficiency of heavy metal ions removal by nano-fibrous metal-organic framework membrane filtration process. Sci Total Environ 674:355–362CrossRefGoogle Scholar
  17. 17.
    Efome JE, Rana D, Matsuura T, Lan CQ (2018) Insight studies on metal-organic framework nanofiltration membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Appl Mater Interfaces 10:18619–18629CrossRefGoogle Scholar
  18. 18.
    Efome JE, Rana D, Matsuura T, Lan CQ (2018) Metal-organic frameworks supported on nanofibers to remove heavy metals. J Mater Chem A 6:4550–4555CrossRefGoogle Scholar
  19. 19.
    Hosseini SM, Jashni E, Jafari MR, Van der Bruggen B, Shahedi Z (2018) Nanocomposite polyvinyl chloride-based heterogeneous cation exchange membrane prepared by synthesized ZnQ2 nanoparticles: ionic behavior and morphological characterization. J Membr Sci 560:1–10CrossRefGoogle Scholar
  20. 20.
    Hosseini SM, Jashni E, Habibi M, Nemati M, Van der Bruggen B (2017) Evaluating the ion transport characteristics of novel graphene oxide nanoplates entrapped mixed matrix cation exchange membranes in water deionization. J Membr Sci 541:641–652CrossRefGoogle Scholar
  21. 21.
    Hosseini SM, Jashni E, Habibi M, Van der Bruggen B (2018) Fabrication of novel electrodialysis heterogeneous ion exchange membranes by incorporating PANI/GO functionalized composite nanoplates. Ionics 24:1789–1801CrossRefGoogle Scholar
  22. 22.
    Hosseini SM, Jashni E, Amani S, Van der Bruggen B (2017) Tailoring the electrochemical properties of ED ion exchange membranes based on the synergism of TiO2 nanoparticles-co-GO nanoplates. J Colloid Interface Sci 505:763–775CrossRefGoogle Scholar
  23. 23.
    Hosseini SM, Madaeni SS, Khodabakhshi AR, Zendehnam A (2010) Preparation and surface modification of PVC/SBR heterogeneous cation exchange membrane with silver nanoparticles by plasma treatment. J Membr Sci 365:438–446CrossRefGoogle Scholar
  24. 24.
    Hosseini SM, Madaeni SS, Khodabakhshi AR (2010) Preparation and characterization of PC/SBR heterogeneous cation exchange membrane filled with carbon nano-tubes. J Membr Sci 362:550–559CrossRefGoogle Scholar
  25. 25.
    Hosseini SM, Madaeni SS, Khodabakhshi AR (2010) Preparation and characterization of ABS/HIPS heterogeneous cation exchange membranes with various blend ratios of polymer binder. J Membr Sci 351:178–188CrossRefGoogle Scholar
  26. 26.
    Huang SW, Lin YF, Li YX, Hu C-C, Chiu T-C (2019) Synthesis of fluorescent carbon dots as selective and sensitive probes for cupric ions and cell imaging. Molecules 24:1785CrossRefGoogle Scholar
  27. 27.
    Dzade NY, Roldan A, Leeuw NH (2016) Surface and shape modification of mackinawite (FeS) nanocrystals by cysteine adsorption: a first-principles DFT-D2 study. Phys Chem Chem Phys 18:32007–32020CrossRefGoogle Scholar
  28. 28.
    Lwoya BS, Albert JNL (2015) Nanostructured block copolymers for proton exchange membrane fuel cells. Energy and Environmental Focus 4:278–290CrossRefGoogle Scholar
  29. 29.
    Suwal S, Doyen A, Bazinet L (2015) Characterization of protein, peptide and amino acid fouling on ion-exchange and filtration membranes: review of current and recently developed methods. J Membr Sci 496:267–283CrossRefGoogle Scholar
  30. 30.
    Kittaka S, Ishimaru S, Kuranishi M, Matsuda T, Yamaguchi T (2006) Enthalpy and interfacial free energy changes of water capillary condensed in mesoporous silica, MCM-41 and SBA-15. Phys Chem Chem Phys 8:3223–3231CrossRefGoogle Scholar
  31. 31.
    Morishige K, Iwasaki H (2003) X-ray study of freezing and melting of water confined within SBA-15. Langmuir 19:2808–2811CrossRefGoogle Scholar
  32. 32.
    Luo T, Abdu S, Wessling M (2018) Selectivity of ion exchange membranes: a review. J Membr Sci 555:429–454CrossRefGoogle Scholar
  33. 33.
    Cassady HJ, Cimino EC, Kumar M, Hickner MA (2016) Specific ion effects on the permselectivity of sulfonated poly (ether sulfone) cation exchange membranes. J Membr Sci 508:146–152CrossRefGoogle Scholar
  34. 34.
    A Alabi, A Alhajaj, L Cseri, G Szekely, P Budd, L Zou (2018) Review of nanomaterials-assisted ion exchange membranes for electromembrane desalination. NPJ Clean Water 10Google Scholar
  35. 35.
    R Wang, M Wang, F Liu, S Ding, X Wang, G Du, J Liu, P Apel, P Kluth, Ch Trautmann, Y Wang, Ultrafast ion sieving using nanoporous polymeric membranes. Nature Communications 596(2018)Google Scholar
  36. 36.
    Nagarale RK, Gohil GS, Shahi VK (2006) Recent developments on ion-exchange membranes and electro-membrane processes. Adv Colloid Interf Sci 119:97–130CrossRefGoogle Scholar
  37. 37.
    Dlugolecki P, Nymeijer K, Metz S, Wessling M (2008) Current status of ion exchange membranes for power generation from salinity gradients. J Membr Sci 319:214–222CrossRefGoogle Scholar
  38. 38.
    Xu T (2005) Ion exchange membranes: state of their development and perspective. J Membr Sci 263:1–29CrossRefGoogle Scholar
  39. 39.
    Hosseini SM, Rafiei S, Hamidi AR, Moghadassi AR, Madaeni SS (2014) Preparation and electrochemical characterization of mixed matrix heterogeneous cation exchange membranes filled with zeolite nanoparticles: ionic transport property in desalination. Desalination 351:138–144CrossRefGoogle Scholar
  40. 40.
    Hosseini SM, Gholami A, Koranian P, Nemati M, Madaeni SS, Moghadassi AR (2014) Electrochemical characterization of mixed matrix heterogeneous cation exchange membrane modified by aluminum oxide nanoparticles: mono/bivalent ionic transportaion. J Taiwan Inst Chem Eng 45:1241–1248CrossRefGoogle Scholar
  41. 41.
    Nemati M, Hosseini SM (2016) Fabrication and electrochemical property modification of mixed matrix heterogeneous cation exchange membranes filled with Fe3O4/PAA core-shell nanoparticles. Ionics 22:899–909CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of EngineeringArak UniversityArakIran

Personalised recommendations