pp 1–9 | Cite as

Thermo-electrochemical study of co-modified Li2O-2B2O3-(LiNi0.5Co0.2Mn0.3)0.98Zr0.02O2 cathode material

  • Liubin Song
  • Xinyu Li
  • Zhongliang XiaoEmail author
  • Jinlian Du
  • Zhong Cao
  • Anxian Li
  • Huali Zhu
Original Paper


In order to improve the thermal stability of the LiNi0.5Co0.2Mn0.3 cathode material, the co-modified Li2O-2B2O3-(LiNi0.5Co0.2Mn0.3)0.98Zr0.02O2 (LBO-NCMZ) is prepared. The XRD, SEM, and Raman show a better layered structure and spherical shape after charging and discharging at high temperature compared with the pristine material. The DSC results show that there is no peak after an endothermic peak at 58.52 °C, which prove that the material structure remains stable after one phase transformation. The NCM(LiNi0.5Co0.2Mn0.3O2) cathode material has three endothermic peaks at higher temperatures 131.93 °C, 155.96 °C, and 195.38 °C. The thermal change of LBO-NCMZ is lower than NCM. At this external constant rate, the LBO-NCMZ material is less affected by temperature; it has lower ΔH value and better thermal stability than NCM. Therefore, the proposed structure-surface optimization method has a positive effect on thermal stability and can effectively solve the battery thermal safety problem.


Co-modified LiNi0.5Co0.2Mn0.3O2 Electrochemical-calorimetric method Thermostability 


Funding information

This work was financially supported by the National Natural Science Foundation of China (Nos. 21501015, 51604042, 31527803, and 21545010).


  1. 1.
    Li W, Song LB, Manthiram A (2017) High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev 46(10):3006–3059CrossRefGoogle Scholar
  2. 2.
    Jayakumar A, Chalmers A, Lie T (2017) Review of prospects for adoption of fuel cell electric vehicles in New Zealand. IET Electr Syst Transp 7(4):259–266CrossRefGoogle Scholar
  3. 3.
    Nitta N, Wu F, Lee J, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264CrossRefGoogle Scholar
  4. 4.
    Fergus J (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954CrossRefGoogle Scholar
  5. 5.
    Lu Z, Macneil D, Dahn J (2001) Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for Lithium-ion batteries. Electrochem Solid State Lett 4(11):A191CrossRefGoogle Scholar
  6. 6.
    Wang RH, Li XH, Wang ZX, Zhang H (2017) Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 34:131–140CrossRefGoogle Scholar
  7. 7.
    Wang RH, Wang ZX, Li XH, Zhang H (2017) Electrochemical analysis the influence of propargyl methanesulfonate as electrolyte additive for spinel LTO interface layer. Electrochim Acta 241:208–219CrossRefGoogle Scholar
  8. 8.
    Wang RH, Li XH, Wang ZX, Guo HJ, He ZJ (2015) Electrochemical analysis for enhancing interface layer of spinel Li4Ti5O12: p-toluenesulfonyl isocyanate as electrolyte additive. ACS Appl Mater Interfaces 7(42):23605–23614CrossRefGoogle Scholar
  9. 9.
    Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288CrossRefGoogle Scholar
  10. 10.
    Blomgren G (2017) The development and future of lithium ion batteries. J Electrochem Soc 164(1):A5019–A5025CrossRefGoogle Scholar
  11. 11.
    Cao H, Xia B, Xu N, Zhang C (2004) Structural and electrochemical characteristics of Co and Al co-doped lithium nickelate cathode materials for lithium-ion batteries. J Alloys Compd 376(1–2):282–286CrossRefGoogle Scholar
  12. 12.
    Hua W, Zhang J, Zheng Z, Liu W, Peng X, Guo X, Zhong B, Wang Y, Wang X (2014) Na-doped Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode material with both high rate capability and high tap density for lithium ion batteries. Dalton Trans 43(39):14824CrossRefGoogle Scholar
  13. 13.
    Zhang B, Li L, Zheng J (2012) Characterization of multiple metals (Cr, Mg) substituted LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery. J Alloys Compd 520:190CrossRefGoogle Scholar
  14. 14.
    Wang Q, Zhang C, Xing J, Yang M, Xie J (2018) Direct synthesis of Al2O3–modified Li(Ni0.5Co0.2Mn0.3)O2, cathode materials for lithium ion batteries. J Wuhan Univ Technol Mater Sci Ed 33(1):97CrossRefGoogle Scholar
  15. 15.
    Xu Y, Liu Y, Lu Z, Wang H, Sun D, Yang G (2016) The preparation and role of Li2ZrO3 surface coating LiNi0.5Co0.2Mn0.3O2 as cathode for lithium-ion batteries. Appl Surf Sci 361:150–156CrossRefGoogle Scholar
  16. 16.
    Kaneda H, Koshika Y, Nakamura T, Nagata H, Ushio R, Mori K (2018) From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries. Adv Eng Mater 8(4):1701682CrossRefGoogle Scholar
  17. 17.
    Lim S, Ahn W, Yeon S, Park S (2014) Enhanced elevated-temperature performance of Li(Ni0.8Co0.15Al0.05)O2 electrodes coated with Li2O-2B2O3 glass. Electrochim Acta 136:1CrossRefGoogle Scholar
  18. 18.
    Zhang H, Cao Z, Sun LX, Sun YJ, Xu F, Liu H, Zhang J, Huang ZQ, Jiang X, Li ZB, Liu S, Wang S, Jiao CL, Zhou HY, Sawada Y (2013) Improved dehydrogenation/rehydrogenation performance of LiBH4 by doping mesoporous Fe2O3 or/and TiF3. J Therm Anal Calorim 112(3):1407–1414CrossRefGoogle Scholar
  19. 19.
    Ghalkhani M, Bahiraei F, Nazri G, Saif M (2017) Electrochemical-thermal model of pouch-type Lithium-ion batteries. Electrochim Acta 247:569–587CrossRefGoogle Scholar
  20. 20.
    Qian Z, Li Y, Rao Z (2016) Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Convers Manag 126:622CrossRefGoogle Scholar
  21. 21.
    Jeongwook S, Kim C, Jai P, Karim Z (2014) Thermal characterization of Li/sulfur cells using isothermal micro-calorimetry. Electrochem Commun 44:42CrossRefGoogle Scholar
  22. 22.
    Rodrigues MTF, Babu G, Gullapalli H, Kalaga K, Sayed FN, Kato K, Ajayan PM (2017) A materials perspective on Li-ion batteries at extreme temperatures. Nat Energy 28:17108CrossRefGoogle Scholar
  23. 23.
    Song LB, Tang FL, Xiao ZL, Cao Z, Zhu H (2018) Energy storage and thermostability of Li3VO4-coated LiNi0.8Co0.1Mn0.1O2 as cathode materials for lithium ion batteries. Front Chem 6:546CrossRefGoogle Scholar
  24. 24.
    Song LB, Li XY, Xiao ZL, Cao Z, Zhu H (2017) Effect of Zr doping and Li2O-2B2O3 layer on the structural electrochemical properties of LiNi0.5Co0.2Mn0.3O2 cathode material: experiments and first-principle calculations. Ionics 5:1–10Google Scholar
  25. 25.
    Choi S, Kim J, Ko Y, Hong Y, Kang Y (2012) Electrochemical properties of Li2O-2B2O3 glass-modified LiMn2O4 powders prepared by spray pyrolysis process. J Power Sources 210:110–115CrossRefGoogle Scholar
  26. 26.
    Li GY, Zhang Z, Wang R, Hung Z, Zuo Z, Zhou H (2016) Effect of trace Al surface doping on the structure, surface chemistry and low temperature performance of LiNi0.5Co0.2Mn0.3O2 cathode. Electrochim Acta 212:399–407CrossRefGoogle Scholar
  27. 27.
    Kaneda H, Koshika Y, Nakamura T, Nagata H, Ushio R, Mri SMMO (2017) Improving the cycling performance and thermal stability of LiNi0.6Co0.2Mn0.2O2 cathode materials by Nb-doping and surface modification. Int J Electrochem Sci 12(6):4640–4653CrossRefGoogle Scholar
  28. 28.
    Shi JL, Xiao DD, Ge M, Yu X, Chu Y, Huang X, Zhang XD, Yin YX, Yang XQ, Guo YG, Gu L, Wan LJ (2018) High-capacity cathode material with high voltage for Li-ion batteries. Adv Mater 30(9):1705575CrossRefGoogle Scholar
  29. 29.
    Kim H, Kim M, Jeong H, Nam H, Cho J (2015) A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles. Nano Lett 15(3):2111–2119CrossRefGoogle Scholar
  30. 30.
    Chen Z, Wang J, Huang J, Fu T, Sun G, Lai S, Zhou R, Li K, Zhao J (2017) The high-temperature and high-humidity storage behaviors and electrochemical degradation mechanism of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries. J Power Sources 363:168CrossRefGoogle Scholar
  31. 31.
    Lu W, Yang H, Prakash J (2006) Determination of the reversible and irreversible heats of LiNi0.8Co0.2O2/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetery. Electrochim Acta 51(7):1322–1329CrossRefGoogle Scholar
  32. 32.
    Ye YH, Shi Y, Cai N, Lee J, He X (2012) Electro-thermal modeling and experimental validation for lithium ion battery. J Power Sources 199:227–238CrossRefGoogle Scholar
  33. 33.
    Zheng J, Liu T, Hu ZH et al (2016) Tuning of thermal stability in layered LiNixMnyCozO2. J Am Chem Soc 138(40):13326CrossRefGoogle Scholar
  34. 34.
    Long YP, Hu XF, Zhu RJ (2012) Thermal analysis of a dynamic Lithium-ion battery during charge. Adv Mater Res 516:489Google Scholar
  35. 35.
    Cai L, White R (2011) Mathematical modeling of a Lithium-ion battery with thermal effects in COMSOL Inc.multiphysics (MP) software. J Power Sources 196(14):5985CrossRefGoogle Scholar
  36. 36.
    Zhang XW (2011) Thermal analysis of a cylindrical lithium-ion battery. Electrochim Acta 56(3):1246–1255CrossRefGoogle Scholar
  37. 37.
    Qiang EJ, Long YP, Hu XF et al (2012) Thermal analysis of a dynamic Lithium-ion battery during charge. Adv Mater Res 516-517:489CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Liubin Song
    • 1
  • Xinyu Li
    • 1
  • Zhongliang Xiao
    • 1
    Email author
  • Jinlian Du
    • 1
  • Zhong Cao
    • 1
  • Anxian Li
    • 1
  • Huali Zhu
    • 2
  1. 1.Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science and TechnologyChangshaChina
  2. 2.School of Materials Science and EngineeringChangsha University of Science and TechnologyChangshaChina

Personalised recommendations