Advertisement

Ionics

pp 1–12 | Cite as

Scalable in situ condensation fabrication of amorphous SiOX@C microbeads derived from organic silane coupling agents for lithium-ion storage

  • Honglin Yan
  • Qiang RuEmail author
  • Ping Gao
  • Shikun Cheng
  • Francis Chi-Chung Ling
Original Paper
  • 13 Downloads

Abstract

In the past few years, silane coupling agents are often used to modify the surface of silicon materials; however, researches in preparation of SiOX-based materials pyrolyzed from silane coupling agents are seldom reported. Hence, in order to prepare amorphous SiOX@C anodes for Li-ion storage, we adopted three kinds of silane coupling agents as organic silicon sources. The results show that silane coupling agents with vinyl group is the optimum organic silicon source. Owing to the strong chemical bonds of Si–O–C, amorphous SiOX particles are uniformly embedded in carbon matrix, forming monodisperse microbeads architecture with good buffer abilities. Therefore, the V-SiOX@C anodes derived from silane coupling agents with vinyl groups show good electrochemical performance, retaining a reversible discharge capacity of 940 mAh g−1 at a current density of 100 mA g−1 after 200 cycles, and it still depicts a good long-term cycling durability, maintaining 739 mAh g−1 at a current density of 400 mA g−1 after 400 cycles.

Keywords

Silane coupling agents SiOX@C anode In situ condensation Li-ion batteries 

Notes

Funding information

This work was financially supported by the union project of National Natural Science Foundation and Guangdong Province (No. U1601214), the Key Projects of Guangdong Province Nature Science Foundation (No. 2017B030311013), the Scientific and Technological Plan of Guangzhou City (201607010322, 201607010274), the Key Project of Guangdong Province Nature Science Foundation (No. 2017B030311013), the Scientific and Technological Plan of Guangzhou City (No. 201804010169), and the Project of the Department of Education of Guangdong Province (2018KTSCX047).

References

  1. 1.
    Jin Y, Zhu B, Lu Z, Liu N, Zhu J (2017) Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv Energy Mater 7:1700715CrossRefGoogle Scholar
  2. 2.
    Shi L, Pang C, Chen S, Wang M, Wang K, Tan Z, Gao P, Ren J, Huang Y, Peng H, Liu Z (2017) Vertical graphene growth on SiO microparticles for stable lithium ion battery anodes. Nano Lett 17:3681–3687CrossRefGoogle Scholar
  3. 3.
    Zhai W, Ai Q, Chen L, Wei S, Li D, Zhang L, Si P, Feng J, Ci L (2017) Walnut-inspired microsized porous silicon/graphene core–shell composites for high-performance lithium-ion battery anodes. Nano Res 10:4274–4283CrossRefGoogle Scholar
  4. 4.
    Zhang D, Wang G, Xu L, Lian J, Bao J, Zhao Y, Qiu J, Li H (2018) Defect-rich N-doped porous carbon derived from soybean for high rate lithium-ion batteries. Appl Surf Sci 451:298–305CrossRefGoogle Scholar
  5. 5.
    Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24:2047–2050CrossRefGoogle Scholar
  6. 6.
    Chen H, Hou X, Chen F, Wang S, Wu B, Ru Q, Qin H, Xia Y (2018) Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature. Carbon 130:433–440CrossRefGoogle Scholar
  7. 7.
    Jung C-H, Choi J, Kim W-S, Hong S-H (2018) A nanopore-embedded graphitic carbon shell on silicon anode for high performance lithium ion batteries. J Mater Chem A 6:8013–8020CrossRefGoogle Scholar
  8. 8.
    Xu Q, Sun JK, Li G, Li JY, Yin YX, Guo YG (2017) Facile synthesis of a SiOx/asphalt membrane for high performance lithium-ion battery anodes. Chem Commun 53:12080–12083CrossRefGoogle Scholar
  9. 9.
    Tian Y, An Y, Feng J (2019) Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 11:10004–10011CrossRefGoogle Scholar
  10. 10.
    An Y, Fei H, Zeng G, Ci L, Xiong S, Feng J, Qian Y (2018) Green, scalable, and controllable fabrication of nanoporous silicon from commercial alloy precursors for high-energy lithium-ion batteries. ACS Nano 12:4993–5002CrossRefGoogle Scholar
  11. 11.
    Guo S, Hu X, Hou Y, Wen Z (2017) Tunable synthesis of yolk-shell porous silicon@carbon for optimizing Si/C-based anode of lithium-ion batteries. ACS Appl Mater Interfaces 9:42084–42092CrossRefGoogle Scholar
  12. 12.
    Liang G, Qin X, Zou J, Luo L, Wang Y, Wu M, Zhu H, Chen G, Kang F, Li B (2018) Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities. Carbon 127:424–431CrossRefGoogle Scholar
  13. 13.
    Li X, Yang D, Hou X, Shi J, Peng Y, Yang H (2017) Scalable preparation of mesoporous silicon@C/graphite hybrid as stable anodes for lithium-ion batteries. J Alloys Compd 728:1–9CrossRefGoogle Scholar
  14. 14.
    Zheng Z, Wu H-H, Chen H, Cheng Y, Zhang Q, Xie Q, Wang L, Zhang K, Wang M-S, Peng D-L, Zeng XC (2018) Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries. Nanoscale 10:22203–22214CrossRefGoogle Scholar
  15. 15.
    Hu R, Ouyang Y, Liang T, Wang H, Liu J, Chen J, Yang C, Yang L, Zhu M (2017) Stabilizing the nanostructure of SnO2 anodes by transition metals: a route to achieve high initial coulombic efficiency and stable capacities for lithium storage. Adv Mater 29:1605006Google Scholar
  16. 16.
    Tian Q, Zhang F, Yang L (2019) Fabricating thin two-dimensional hollow tin dioxide/carbon nanocomposite for high-performance lithium-ion battery anode. Appl Surf Sci 481:1377–1384CrossRefGoogle Scholar
  17. 17.
    Tian Q, Zhang F, Zhang W, Yang L (2019) Non-smooth carbon coating porous SnO2 quasi-nanocubes towards high lithium storage. Electrochim Acta 307:393–402CrossRefGoogle Scholar
  18. 18.
    Zheng Z, Zao Y, Zhang Q, Cheng Y, Chen H, Zhang K, Wang M-S, Peng D-L (2018) Robust erythrocyte-like Fe2O3@carbon with yolk-shell structures as high-performance anode for lithium ion batteries. Chem Eng J 347:563–573CrossRefGoogle Scholar
  19. 19.
    Wu ZS, Ren WC, Wen L, Gao LB, Zhao JP, Chen ZP, Zhou GM, Li F, Cheng HM (2010) Graphene anchored with Co3O4 nanoparticles as anode of Lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194CrossRefGoogle Scholar
  20. 20.
    Li L, Raji AR, Tour JM (2013) Graphene-wrapped MnO2-graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv Mater 25:6298–6302CrossRefGoogle Scholar
  21. 21.
    Liu D, Chen C, Hu Y, Wu J, Zheng D, Xie Z-z, Wang G, Qu D, Li J, Qu D (2018) Reduced graphene-oxide/highly ordered mesoporous SiOx hybrid material as an anode material for lithium ion batteries. Electrochim Acta 273:26–33CrossRefGoogle Scholar
  22. 22.
    Kang T, Ma Z, Zuo X, Xiao X, Nan J (2019) Preparation of flexible self-supporting 3D SiOx-based membrane anodes with stabilized electrochemical performances for lithium-ion batteries. Energ Technol 7:1800635CrossRefGoogle Scholar
  23. 23.
    Han M, Yu J (2019) Subnanoscopically and homogeneously dispersed SiOx/C composite spheres for high-performance lithium ion battery anodes. J Power Sources 414:435–443CrossRefGoogle Scholar
  24. 24.
    Gu Z, Xia X, Liu C, Hu X, Chen Y, Wang Z, Liu H (2018) Yolk structure of porous C/SiO2/C composites as anode for lithium-ion batteries with quickly activated SiO2. J Alloys Compd 757:265–272CrossRefGoogle Scholar
  25. 25.
    Xu Q, Sun JK, Yu ZL, Yin YX, Xin S, Yu SH, Guo YG (2018) SiOx encapsulated in graphene bubble film: an ultrastable Li-ion battery anode. Adv Mater 30:1707430CrossRefGoogle Scholar
  26. 26.
    Chen T, Wu J, Zhang Q, Su X (2017) Recent advancement of SiOx based anodes for lithium-ion batteries. J Power Sources 363:126–144CrossRefGoogle Scholar
  27. 27.
    Li Z, Zhao H, Lv P, Zhang Z, Zhang Y, Du Z, Teng Y, Zhao L, Zhu Z (2018) Watermelon-like structured SiOx-TiO2@C nanocomposite as a high-performance lithium-ion battery anode. Adv Funct Mater 28:1605711CrossRefGoogle Scholar
  28. 28.
    Yu Q, Ge PP, Liu ZH, Xu M, Yang W, Zhou L, Zhao DY, Mai LQ (2018) Ultrafine SiOx/C nanospheres and their pomegranate-like assemblies for high-performance lithium storage. J Mater Chem A 6:14903–14909CrossRefGoogle Scholar
  29. 29.
    Xu Q, Sun J-K, Yin Y-X, Guo Y-G (2018) Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes. Adv Funct Mater 28:1705235CrossRefGoogle Scholar
  30. 30.
    Han J, Chen G, Yan T, Liu H, Shi L, An Z, Zhang J, Zhang D (2018) Creating graphene-like carbon layers on SiO anodes via a layer-by-layer strategy for lithium-ion battery. Chem Eng J 347:273–279CrossRefGoogle Scholar
  31. 31.
    Yan N, Wang F, Zhong H, Li Y, Wang Y, Hu L, Chen Q (2013) Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries. Sci Rep 3:1568CrossRefGoogle Scholar
  32. 32.
    Wen Y, Zhu Y, Langrock A, Manivannan A, Ehrman SH, Wang C (2013) Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes. Small 9:2810–2816CrossRefGoogle Scholar
  33. 33.
    Walkowiak M, Zalewska A, Jesionowski T, Waszak D, Czajka B (2006) Effect of chemically modified silicas on the properties of hybrid gel electrolyte for Li-ion batteries. J Power Sources 159:449–453CrossRefGoogle Scholar
  34. 34.
    Mori T, Okada Y, Kamiya H (2016) Effect of surface modification of silica particles on interaction forces and dispersibility in suspension. Adv Powder Technol 27:830–838CrossRefGoogle Scholar
  35. 35.
    Wang J, Hou X, Zhang M, Li Y, Wu Y, Liu X, Hu S (2016) 3-Aminopropyltriethoxysilane-assisted Si@SiO2/CNTs hybrid microspheres as superior anode materials for Li-ion batteries. Silicon 9:97–104CrossRefGoogle Scholar
  36. 36.
    Yang C, Zhang Y, Zhou J, Lin C, Lv F, Wang K, Feng J, Xu Z, Li J, Guo S (2018) Hollow Si/SiOx nanosphere/nitrogen-doped carbon superstructure with a double shell and void for high-rate and long-life lithium-ion storage. J Mater Chem A 6:8039–8046CrossRefGoogle Scholar
  37. 37.
    Chang W-S, Park C-M, Kim J-H, Kim Y-U, Jeong G, Sohn H-J (2012) Quartz (SiO2): a new energy storage anode material for Li-ion batteries. Energy Environ Sci 5:6895CrossRefGoogle Scholar
  38. 38.
    Park MS, Park E, Lee J, Jeong G, Kim KJ, Kim JH, Kim YJ, Kim H (2014) Hydrogen silsequioxane-derived Si/SiOx nanospheres for high-capacity lithium storage materials. ACS Appl Mater Interfaces 6:9608–9613CrossRefGoogle Scholar
  39. 39.
    Wilamowska M, Pradeep VS, Graczyk-Zajac M, Riedel R, Sorarù GD (2014) Tailoring of SiOC composition as a way to better performing anodes for Li-ion batteries. Solid State Ionics 260:94–100CrossRefGoogle Scholar
  40. 40.
    Kaspar J, Terzioglu C, Ionescu E, Graczyk-Zajac M, Hapis S, Kleebe HJ, Riedel R (2014) Stable SiOC/Sn nanocomposite anodes for lithium-ion batteries with outstanding cycling stability. Adv Funct Mater 24:4097–4104CrossRefGoogle Scholar
  41. 41.
    Ionescu E, Papendorf B, Kleebe HJ, Poli F, Muller K, Riedel R (2010) Polymer-derived silicon oxycarbide/hafnia ceramic nanocomposites. Part I: phase and microstructure evolution during the ceramization process. J Am Ceram Soc 93:1774–1782CrossRefGoogle Scholar
  42. 42.
    Harshe R, Balan C, Riedel R (2004) Amorphous Si(Al)OC ceramic from polysiloxanes: bulk ceramic processing, crystallization behavior and applications. J Eur Ceram Soc 24:3471–3482CrossRefGoogle Scholar
  43. 43.
    Liu Y, Tai Z, Zhou T, Sencadas V, Zhang J, Zhang L, Konstantinov K, Guo Z, Liu HK (2017) An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for lithium-ion batteries. Adv Mater 29:1703028CrossRefGoogle Scholar
  44. 44.
    Wang GQ, Wen ZS, Yang YE, Yin JP, Kong WQ, Li S, Sun JC, Ji SJ (2018) Ultra-long life Si@rGO/g-C3N4 with a multiply synergetic effect as an anode material for lithiumion batteries. J Mater Chem A 6:7557–7565CrossRefGoogle Scholar
  45. 45.
    Hou JH, Cao CB, Idrees F, Ma XL (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9:2556–2564CrossRefGoogle Scholar
  46. 46.
    Jiang J, Zhu JH, Ai W, Fan ZX, Shen XN, Zou CJ, Liu JP, Zhang H, Yu T (2014) Evolution of disposable bamboo chopsticks into uniform carbon fibers: a smart strategy to fabricate sustainable anodes for Li-ion batteries. Energy Environ Sci 7:2670–2679CrossRefGoogle Scholar
  47. 47.
    Zhang Y, Ma Q, Wang S, Liu X, Li L (2018) Poly (vinyl alcohol)-assisted fabrication of hollow carbon spheres/reduced graphene oxide nanocomposites for high-performance lithium-ion battery anodes. ACS Nano 12:4824–4834CrossRefGoogle Scholar
  48. 48.
    Yue X, Sun W, Zhang J, Wang F, Yang Y, Lu C, Wang Z, Rooney D, Sun K (2016) Macro-mesoporous hollow carbon spheres as anodes for lithium-ion batteries with high rate capability and excellent cycling performance. J Power Sources 331:10–15CrossRefGoogle Scholar
  49. 49.
    Sun H-g, Xiao H-h, Song W, Wang J, Zhang W-r, Ru S, Ai Z-q, Wang C-X (2019) A novel N-doped organic porous carbon derive from water-based alkyd resin for lithium ion battery anode materials. J Alloys Compd 805:984–990CrossRefGoogle Scholar
  50. 50.
    Yoo H, Park E, Bae J, Lee J, Chung DJ, Jo YN, Park MS, Kim JH, Dou SX, Kim YJ, Kim H (2018) Si nanocrystal-embedded SiOx nanofoils: two-dimensional nanotechnology-enabled high performance Li storage materials. Sci Rep 8:6904CrossRefGoogle Scholar
  51. 51.
    Ngo DT, Le HTT, Pham XM, Jung JW, Vu NH, Fisher JG, Im WB, Kim ID, Park CJ (2018) Highly porous coral-like silicon particles synthesized by an ultra-simple thermal-reduction method. J Mater Chem A 6:2834–2846CrossRefGoogle Scholar
  52. 52.
    Liu Z, Guan D, Yu Q, Xu L, Zhuang Z, Zhu T, Zhao D, Zhou L, Mai L (2018) Monodisperse and homogeneous SiOx/C microspheres: a promising high-capacity and durable anode material for lithium-ion batteries. Energy Storage Mater 13:112–118CrossRefGoogle Scholar
  53. 53.
    Shen D, Huang C, Gan L, Liu J, Gong Z, Long M (2018) Rational design of Si@SiO2/C composites using sustainable cellulose as a carbon resource for anodes in lithium-ion batteries. ACS Appl Mater Interfaces 10:7946–7954CrossRefGoogle Scholar
  54. 54.
    Liu Z, Bai S, Liu B, Guo P, Lv M, Liu D, He D (2017) Interfacial modification of a lightweight carbon foam current collector for high-energy density Si/LCO lithium-ion batteries. J Mater Chem A 5:13168–13175CrossRefGoogle Scholar
  55. 55.
    Seko S, Nara H, Jeong M, Yokoshima T, Momma T, Osaka T (2017) Carbonate-based additive for improvement of cycle durability of electrodeposited Si-O-C composite anode in glyme-based ionic liquid electrolyte for use in lithium secondary batteries. Electrochim Acta 243:65–71CrossRefGoogle Scholar
  56. 56.
    Ahn S, Jeong M, Miyamoto K, Yokoshima T, Nara H, Momma T, Osaka T (2017) Development of areal capacity of Si-O-C composites as anode for lithium secondary batteries using 3D-structured carbon paper as a current collector. J Electrochem Soc 164:A355–A359CrossRefGoogle Scholar
  57. 57.
    Hou G, Cheng B, Cao Y, Yao M, Li B, Zhang C, Weng Q, Wang X, Bando Y, Golberg D, Yuan F (2016) Scalable production of 3D plum-pudding-like Si/C spheres: towards practical application in Li-ion batteries. Nano Energy 24:111–120CrossRefGoogle Scholar
  58. 58.
    Xu Q, Li J-Y, Sun J-K, Yin Y-X, Wan L-J, Guo Y-G (2017) Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv Energy Mater 7:1601481CrossRefGoogle Scholar
  59. 59.
    Jiang Q, Zhang Z, Yin S, Guo Z, Wang S, Feng C (2016) Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries. Appl Surf Sci 379:73–82CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Honglin Yan
    • 1
  • Qiang Ru
    • 1
    Email author
  • Ping Gao
    • 1
  • Shikun Cheng
    • 1
  • Francis Chi-Chung Ling
    • 2
  1. 1.Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhouChina
  2. 2.Department of PhysicsThe University of Hong KongHong KongChina

Personalised recommendations