pp 1–11 | Cite as

Study on Nafion/Nafion-g-poly (sulfobetaine methacrylate)-blended amphoteric membranes for vanadium redox flow battery

  • Jicui Dai
  • Hongqiang Zhang
  • Zhaobin Sui
  • Huili Hu
  • Peng Gao
  • Yongming Zhu
  • Yichao Dong
  • Xiangguo TengEmail author
Original Paper


In order to reduce the vanadium ion permeability while still keep its high stability, atom radical polymerization (ATRP) method was used to introduce zwitterionic sulfobetaine methacrylate (SBMA) onto the Nafion matrix in homogenous solution. The Nafion-grafted poly SBMA (N-g-PSBMA) solution was then used to blend with common Nafion solution to prepare Nafion/Nafion-g-PSBMA (N/N-g-PSBMA) amphoteric membranes by solution casting method. The grafted resins and membranes were characterized by attenuated total reflectance Fourier transform infrared spectra (ATR-FTIR), energy dispersive X-Ray spectroscopy (EDX), scanning electron microscopy (SEM), and water-contact angle analysis. The results prove that the SBMA has been successfully grafted onto the Nafion backbones. Furthermore, the N/N-g-PSBMA membranes have shown higher ion selectivity, coulombic efficiency, and energy efficiency than that of pure recast Nafion (r-Nafion) membrane for VRB application. At the current density of 40–80 mA cm−2, the average energy efficiency of the VRB with N/N-g-PSBMA-20% membrane has reached up to 84.9%, which is 4.2% higher than that of the VRB with the r-Nafion membrane at the same current densities. Moreover, the 100-cycles charge-discharge test proves that the N/N-g-PSBMA-20% membrane possesses higher stability and capacity retention ability than that of r-Nafion membrane, confirming the great potential of such membranes for VRB application.


Vanadium battery Atom transfer radical polymerization Amphoteric membrane 



This work is financially supported by the National Natural Science Foundation of China (Grant No. 21703048) and the Shandong Provincial Natural Science Foundation of China (Grant No. ZR2017MB032).


  1. 1.
    Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613CrossRefGoogle Scholar
  2. 2.
    Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA (1986) New all-vanadium redox flow cell. J Electrochem Soc 133(5):1057–1058CrossRefGoogle Scholar
  3. 3.
    Liu B, Liu S, He Z, Zhao K, Li J, Wei X, Huang R, Yang Y (2019) Improving the performance of negative electrode for vanadium redox flow battery by decorating bismuth hydrogen edetate complex on carbon felt. Ionics 25(2019):4231–4241. CrossRefGoogle Scholar
  4. 4.
    Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M (2013) Review of material research and development for vanadium redox flow battery applications. Electrochim Acta 101(7):27–40CrossRefGoogle Scholar
  5. 5.
    Skyllas-Kazacos M, Kasherman D, Hong DR, Kazacos M (1991) Characteristics and performance of 1 kW UNSW vanadium redox battery. J Power Sources 35(4):399–404CrossRefGoogle Scholar
  6. 6.
    Vardner JT, Edziah JS, West AC (2019) Measurement of VO2+ transference number in Nafion with varying concentrations of sulfuric acid. J Electrochem Soc 166(6):A848–A855CrossRefGoogle Scholar
  7. 7.
    Prifti H, Parasuraman A, Winardi S, Lim TM, Skyllas-Kazacos M (2012) Membranes for redox flow battery applications. Membranes 2(2):275–306CrossRefGoogle Scholar
  8. 8.
    Mohammadi T, Skyllaskazacos M (1995) Preparation of sulfonated composite membrane for vanadium redox flow battery applications. J Membr Sci 107(1–2):35–45CrossRefGoogle Scholar
  9. 9.
    Lee MS, Kang HG, Jeon JD, Choi YW, Yoon YG (2016) A novel amphoteric ion-exchange membrane prepared by the pore-filling technique for vanadium redox flow batteries. RSC Adv 6(67):63023–63029CrossRefGoogle Scholar
  10. 10.
    Doan T, Hoang T, Chen P (2015) Recent development of polymer membranes as separators for all-vanadium redox flow batteries. RSC Adv 5(89):72805–72815CrossRefGoogle Scholar
  11. 11.
    Narducci R, Pasquini L, Chailan J, Knauth P, Di Vona ML (2016) Low-permeability poly(ether ether ketone)-based ampholytic membranes. ChemPlusChem 81(6):550–556CrossRefGoogle Scholar
  12. 12.
    Schwenzer B, Zhang J, Kim S, Li L, Liu J, Yang Z (2011) Membrane development for vanadium redox flow batteries. ChemSusChem 4(10):1388–1406CrossRefGoogle Scholar
  13. 13.
    Huang S, Chen M, Lin Y (2017) Chitosan–silica anion exchange membrane for the vanadium redox flow energy storage battery applications. React Funct Polym 119:1–8CrossRefGoogle Scholar
  14. 14.
    Yu L, Lin F, Xiao W, Xu L, Xi J (2019) Achieving efficient and inexpensive vanadium flow battery by combining CexZr1−xO2 electrocatalyst and hydrocarbon membrane. Chem Eng J 356:622–631CrossRefGoogle Scholar
  15. 15.
    Li X, Zhang H, Mai Z, Zhang H, Vankelecom I (2011) Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ Sci 4(4):1147–1160CrossRefGoogle Scholar
  16. 16.
    Jiang B, Wu L, Yu L, Qiu X, Xi J (2016) A comparative study of Nafion series membranes for vanadium redox flow batteries. J Membr Sci 510:18–26CrossRefGoogle Scholar
  17. 17.
    Xi JY, Wu ZH, Teng XG, Zhao YT, Chen LQ, Qiu XP (2008) Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. J Mater Chem 18(11):1232–1238CrossRefGoogle Scholar
  18. 18.
    Teng X, Zhao Y, Xi J, Wu Z, Qiu X, Chen L (2009) Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery. J Power Sources 189(2):1240–1246CrossRefGoogle Scholar
  19. 19.
    Lee KJ, Chu YH (2014) Preparation of the graphene oxide (GO)/Nafion composite membrane for the vanadium redox flow battery (VRB) system. Vacuum 107:269–276CrossRefGoogle Scholar
  20. 20.
    Kim J, Jeon J, Kwak S (2014) Nafion-based composite membrane with a permselective layered silicate layer for vanadium redox flow battery. Electrochem Commun 38:68–70CrossRefGoogle Scholar
  21. 21.
    Lu S, Wu C, Liang D, Tan Q, Xiang Y (2014) Layer-by-layer self-assembly of Nafion-[CS-PWA] composite membranes with suppressed vanadium ion crossover for vanadium redox flow battery applications. RSC Adv 4(47):24831–24837CrossRefGoogle Scholar
  22. 22.
    Peng K, Wang K, Hsu K, Liu Y (2015) Atom transfer radical addition/polymerization of perfluorosulfonic acid polymer with the C–F bonds as reactive sites. ACS Macro Lett 4(2):197–201CrossRefGoogle Scholar
  23. 23.
    Peng K, Lai J, Liu Y (2016) Nanohybrids of graphene oxide chemically-bonded with Nafion: preparation and application for proton exchange membrane fuel cells. J Membr Sci 514:86–94CrossRefGoogle Scholar
  24. 24.
    Peng K, Lai J, Liu Y (2017) Preparation of poly(styrenesulfonic acid) grafted Nafion with a Nafion-initiated atom transfer radical polymerization for proton exchange membranes. RSC Adv 7(59):37255–37260CrossRefGoogle Scholar
  25. 25.
    Feng K, Liu L, Tang BB, Li NW, Wu PY (2016) Nafion-initiated ATRP of 1-vinylimidazole for preparation of proton exchange membranes. ACS Appl Mater Interfaces 8(18):11516–11525CrossRefGoogle Scholar
  26. 26.
    Dai J, Dong Y, Yu C, Liu Y, Teng X (2018) A novel Nafion-g-PSBMA membrane prepared by grafting zwitterionic SBMA onto Nafion via SI-ATRP for vanadium redox flow battery application. J Membr Sci 554:324–330CrossRefGoogle Scholar
  27. 27.
    Yue W, Li H, Xiang T, Qin H, Sun S, Zhao C (2013) Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. J Membr Sci 446:79–91CrossRefGoogle Scholar
  28. 28.
    Damay F, Klein LC (2003) Transport properties of Nafion() composite membranes for proton-exchange membranes fuel cells. Solid State Ionics 162-163:261–267CrossRefGoogle Scholar
  29. 29.
    Liang Z, Chen W, Liu J, Wang S, Zhou Z, Li W, Sun G, Xin Q (2004) FT-IR study of the microstructure of Nafion® membrane. J Membr Sci 233(1–2):39–44CrossRefGoogle Scholar
  30. 30.
    Xiang T, Luo C, Wang R, Han Z, Sun S, Zhao C (2015) Ionic-strength-sensitive polyethersulfone membrane with improved anti-fouling property modified by zwitterionic polymer via in situ cross-linked polymerization. J Membr Sci 476:234–242CrossRefGoogle Scholar
  31. 31.
    Yu L, Lin F, Xu L, Xi J (2016) A recast Nafion/graphene oxide composite membrane for advanced vanadium redox flow batteries. RSC Adv 6(5):3756–3763CrossRefGoogle Scholar
  32. 32.
    Ma J, Wang S, Peng J, Yuan J, Yu C, Li J, Ju X, Zhai M (2013) Covalently incorporating a cationic charged layer onto Nafion membrane by radiation-induced graft copolymerization to reduce vanadium ion crossover. Eur Polym J 49(7):1832–1840CrossRefGoogle Scholar
  33. 33.
    Yuan J, Yu C, Peng J, Wang Y, Ma J, Qiu J, Li J, Zhai M (2013) Facile synthesis of amphoteric ion exchange membrane by radiation grafting of sodium styrene sulfonate and N,N-dimethylaminoethyl methacrylate for vanadium redox flow battery. J Polym Sci A Polym Chem 51(24):5194–5202CrossRefGoogle Scholar
  34. 34.
    Teng X, Dai J, Bi F, Jiang X, Song Y, Yin G (2015) Ultra-thin polytetrafluoroethene/Nafion/silica membranes prepared with nano SiO2 and its comparison with sol–gel derived one for vanadium redox flow battery. Solid State Ionics 280:30–36CrossRefGoogle Scholar
  35. 35.
    Mohammadi T, Kazacos MS (1997) Evaluation of the chemical stability of some membranes in vanadium solution. J Appl Electrochem 27(2):153–160CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jicui Dai
    • 1
  • Hongqiang Zhang
    • 1
  • Zhaobin Sui
    • 1
  • Huili Hu
    • 1
  • Peng Gao
    • 1
  • Yongming Zhu
    • 1
  • Yichao Dong
    • 1
  • Xiangguo Teng
    • 1
    Email author
  1. 1.School of Marine Science and TechnologyHarbin Institute of Technology at WeihaiWeihaiChina

Personalised recommendations