Advertisement

Ionics

pp 1–6 | Cite as

Effect of different oxidants on properties of tin-graphite composite anode material for lithium-ion battery

  • Yongqi Dai
  • Xuetian Li
  • Lina Yu
  • Axiang Li
  • Mengdi Ma
  • Hongmei Shao
  • Zhongcai ShaoEmail author
Original Paper
  • 11 Downloads

Abstract

In this paper, oxidation doping modification of tin-graphite composite anode material, discussing the effect of doping different oxidants on the properties of composites. The structure and morphology were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the samples were investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge and discharge tests. The results showed that the oxidation effect of H2SO4 was better than HNO3 and H2O2. When the tin-graphite composite was oxidized by H2SO4, the material had better electrochemical properties, of which initial specific discharge capacity reached 859 mAh·g−1 at the rate of 0.1C, increasing by 113 and 76 mAh·g−1 compared with the HNO3 and H2O2. The initial discharge specific capacities at rates of 0.2, 0.5, and 1C were 809, 761, and 627 mAh·g−1.

Keywords

Graphite oxide Anode material Lithium-ion battery Electrochemical property 

Notes

References

  1. 1.
    Burnham A, Han J, Clark CE, Wang M, Dunn JB, Palou-Rivera I (2012) Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum. Environ Sci Technol 46(2):619–627CrossRefGoogle Scholar
  2. 2.
    Doyle MW, Havlick DG (2009) Infrastructure and the environment. Social Science Electronic Publishing 34(1):349–373Google Scholar
  3. 3.
    Lund H (2007) Renewable energy strategies for sustainable development. Energy 32(6):912–919CrossRefGoogle Scholar
  4. 4.
    Han YS, Lee JY (2003) Improvement on the electrochemical characteristics of graphite anodes by coating of the pyrolytic carbon using tumbling chemical vapor deposition. Electrochim Acta 48(8):1073–1079CrossRefGoogle Scholar
  5. 5.
    Julien C (2000) 4-Volt cathode materials for rechargeable lithium batteries wet-chemistry synthesis, structure and electrochemistry. Ionics 6(1–2):30–46CrossRefGoogle Scholar
  6. 6.
    Liu H, Tang D (2009) The effect of nanolayer AlF3 coating on LiMn2O4 cycle life in high temperature for lithium secondary batteries. Russ J Electrochem 45(7):762–764CrossRefGoogle Scholar
  7. 7.
    Goodenough JB, Manthiram A, Wnetrzewski B (2015) Electrodes for lithium batteries. J Power Sources 43(s1–3):269–275Google Scholar
  8. 8.
    Katz H, Bögel W, Büchel JP (1998) Industrial awareness of lithium batteries in the world, during the past two years. J Power Sources 72(1):43–50CrossRefGoogle Scholar
  9. 9.
    Park YS, Lee TW, Shin MS, Lim SH, Lee SM (2016) Modification for improving the electrochemical performance of spherically-shaped natural graphite as anode material for lithium-ion batteries. J Electrochem Soc 163:3078–3086CrossRefGoogle Scholar
  10. 10.
    Striebel KA, Shim J, Cairns EJ, Kostecki R, Lee YJ, Reimer J, Richardson TJ, Ross PN, Song X, Zhuang GV (2004) Diagnostic analysis of electrodes from high-power lithium-ion cells cycled under different conditions. J Electrochem Soc 151(6):A857–A866CrossRefGoogle Scholar
  11. 11.
    Ma C, Zhao Y, Li J, Song Y, Shi J, Guo Q, Liu L (2013) Synthesis and electrochemical properties of artificial graphite as an anode for high-performance lithium-ion batteries. Carbon 64(Complete):553–556CrossRefGoogle Scholar
  12. 12.
    Casimir A, Zhang H, Ogoke O, Amine JC, Lu J, Wu G (2016) Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation. Nano Energy 27:359–376CrossRefGoogle Scholar
  13. 13.
    Lou S, Cheng X, Zhao Y, Lushington A, Gao J, Li Q, Zuo P, Wang B, Gao Y, Ma Y, du C, Yin G, Sun X (2017) Superior performance of ordered macroporous TiNb2O7, anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy 34:15–25CrossRefGoogle Scholar
  14. 14.
    Walter M, Erni R, Kovalenko MV (2015) Inexpensive antimony nanocrystals and their composites with red phosphorus as high-performance anode materials for Na-ion batteries. Sci Rep 5:8418CrossRefGoogle Scholar
  15. 15.
    Dunn JB, James C, Gaines L, Gallagher K, Dai Q, Kelly JC (2015) Material and energy flows in the production of cathode and anode materials for lithium ion batteries. Acta Chem Scand 49:44–52Google Scholar
  16. 16.
    Zhang WM, Hu JS, Guo YG et al (2010) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 20(6):1160–1165CrossRefGoogle Scholar
  17. 17.
    Lou XW, Wang Y, Yuan C, Lee JY, Archer LA (2006) Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater 18(17):2325–2329CrossRefGoogle Scholar
  18. 18.
    Yao J, Shen X, Wang B et al (2009) In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem Commun 11(10):1849–1852Google Scholar
  19. 19.
    Liu Y, Zhang X (2009) Effect of calcination temperature on the morphology and electrochemical properties of Co3O4 for lithium-ion battery. Electrochim Acta 54(17):4180–4185CrossRefGoogle Scholar
  20. 20.
    Paek SM, Yoo EJ, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 9(1):72–75CrossRefGoogle Scholar
  21. 21.
    Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31–35CrossRefGoogle Scholar
  22. 22.
    Chou SL, Wang JZ, Choucair M et al (2010) Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem Commun 12(2):303–306CrossRefGoogle Scholar
  23. 23.
    Wang G, Wang B, Wang X, Park J, Dou S, Ahn H, Kim K (2009) Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem 19(44):8378–8384CrossRefGoogle Scholar
  24. 24.
    Beaulieu LY, Hewitt KC, Turner RL, Bonakdarpour A, Abdo AA, Christensen L, Eberman KW, Krause LJ, Dahn JR (2003) The electrochemical reaction of Li with amorphous Si-Sn alloys. J Electrochem Soc 150(2):A149CrossRefGoogle Scholar
  25. 25.
    Wang H, Yoshio M (2006) Graphite, a suitable positive electrode material for high-energy electrochemical capacitors. Electrochem Commun 8(9):1481–1486CrossRefGoogle Scholar
  26. 26.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRefGoogle Scholar
  27. 27.
    Trifonova A, Stankulov T, Winter M (2008) Study of metal-supported carbon matrix as a high-capacity anode for Li-ion battery. Ionics 14(5):421–425CrossRefGoogle Scholar
  28. 28.
    Wang GX, Yao J, Ahn JH et al (2004) Electrochemical properties of nanosize Sn-coated graphite anodes in lithium-ion cells. J Appl Electrochem 34(2):187–190CrossRefGoogle Scholar
  29. 29.
    He ZK, Sun Q, Xie K, Lu P, Shi ZN et al (2019) Reactive molten salt synthesis of natural graphite flakes decorated with SnO2 nanorods as high performance, low cost anode material for lithium ion batteries. J Alloys Compd 792(2):1213–1222CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yongqi Dai
    • 1
  • Xuetian Li
    • 1
  • Lina Yu
    • 1
  • Axiang Li
    • 1
  • Mengdi Ma
    • 1
  • Hongmei Shao
    • 1
  • Zhongcai Shao
    • 1
    Email author
  1. 1.School of Environmental and Chemical EngineeringShenyang Ligong UniversityShenyangPeople’s Republic of China

Personalised recommendations