Advertisement

Ionics

pp 1–8 | Cite as

P2-Na2/3Mn0.66Ni0.21Mg0.05Al0.03X0.0225O2 (X = Zr, Ce) as high performance cathode materials for sodium-ion batteries

  • Chunyu Ke
  • Fang Fu
  • Jianan Zheng
  • Weihua YangEmail author
Original Paper
  • 17 Downloads

Abstract

As an alternative to lithium-ion batteries (LIBs), sodium-ion batteries (SIBs) have a great potential for large-scale energy storage. Here, new component P2-Na2/3Mn0.66Ni0.21Mg0.05Al0.03X0.0225O2 (X = Zr, Ce) cathode materials were designed and synthesized by co-precipitation method. The cathode materials of new component exhibit excellent electrochemical properties due to the new materials concentrate on the advantages of the individual elements. The as-prepared materials display excellent cycling stability (P2-Na2/3Mn0.66Ni0.21Mg0.05Al0.03Zr0.0225O2 delivers a reversible capacity of 89.3 mAh g−1 and P2-Na2/3Mn0.66Ni0.21Mg0.05Al0.03Ce0.0225O2 shows the capacity of 90.2 mAh g−1 over 300 cycles at a 1 C rate). The new component materials also indicate extremely high rate capability (~ 60 mAh g−1 after 1000 cycles at a 10 C rate).

Keywords

P2-type layered oxide Cathode material Multiple elements Sodium-ion batteries 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Approval No. 21473063 and 21805100) and the Subsidized Project for Cultivating Postgraduates’ Innovative Ability in Scientific Research of Huaqiao University.

References

  1. 1.
    Hou H, Gan B, Gong Y et al (2016) P2-type Na0.67Ni0.23Mg0.1Mn0.67O2 as a high-performance cathode for a sodium-ion battery. Inorg Chem 55(17):9033–9037Google Scholar
  2. 2.
    Pang WL, Zhang XH, Guo JZ, Li JY, Yan X, Hou BH, Guan HY, Wu XL (2017) P2-type Na2/3Mn1-xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. J. Power Sour 356:80–88Google Scholar
  3. 3.
    Wang L, Sun YG, Hu LL et al (2017) Copper-substituted Na0.67Ni0.3−xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2-O2 phase transition. J Mater Chem A 5(18):8752–8761Google Scholar
  4. 4.
    Zhang C, Gao R, Zheng L et al (2018) New insights into the roles of Mg in improving the rate capability and cycling stability of O3-NaMn0.48Ni0.2Fe0.3Mg0.02O2 for sodium-ion batteries. ACS Appl Mater Interfaces 10(13):10819–10827Google Scholar
  5. 5.
    Liu Y, Xin F, Zhang A et al (2016) Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: the capacity decay mechanism and Al2O3 surface modification. Nano Energy 27:27–34Google Scholar
  6. 6.
    Sathiya M, Jacquet Q, Doublet ML et al (2018) A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes. Adv Energy Mater 8(11):1702599Google Scholar
  7. 7.
    Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958Google Scholar
  8. 8.
    Palomares V, Serras P, Villaluenga I et al (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5(3):5884–5901Google Scholar
  9. 9.
    Lee DH, Xu J, Meng YS (2013) An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys 15(9):3304–3312Google Scholar
  10. 10.
    Jiang KZ, Xu S, Guo SH et al (2018) A phase-transition-free cathode for sodium-ion batteries with ultralong cycle life. Nano Energy 52:88–94Google Scholar
  11. 11.
    Wang PF, Yao HR, Zuo TT, Yin YX, Guo YG (2017) Novel P2-type Na2/3Ni1/6Mg1/6Ti2/3O2 as an anode material for sodium-ion batteries. Chem Commun 53(12):1957–1960Google Scholar
  12. 12.
    Shinichi K, Yoshiyuki T, Syuhei S (2017) P′2-Na2/3Mn0.9Me0.1O2 (Me = Mg, Ti, Co, Ni, Cu, and Zn): correlation between orthorhombic distortion and electrochemical property. Chem Mater 29(21):8958–8962Google Scholar
  13. 13.
    Chen J, Li L, Wu L, Yao Q, Yang H, Liu Z, Xia L, Chen Z, Duan J, Zhong S (2018) Enhanced cycle stability of Na0.9Ni0.45Mn0.55O2 through tailoring O3/P2 hybrid structures for sodium-ion batteries. J Power Sources 406:110–117Google Scholar
  14. 14.
    Hasa I, Passerini S, Hassoun J (2017) Toward high energy density cathode materials for sodium-ion batteries: investigating the beneficial effect of aluminum doping on the P2-type structure. J Mater Chem A 5(9):54467–54477Google Scholar
  15. 15.
    Wang PF, You Y, Yin YX et al (2016) Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angew Chem Int Ed Engl 55(26):7445–7449Google Scholar
  16. 16.
    Zheng L, Li J, Obrovac MN (2017) Crystal structures and electrochemical performance of air-stable Na2/3Ni1/3-xCuxMn2/3O2 in sodium cells. Chem Mater 29(4):1623–1631Google Scholar
  17. 17.
    Zheng X, Peng L, Zhu H et al (2018) New insights into understanding the exceptional electrochemical performance of P2-type manganese-based layered oxide cathode for sodium ion batteries. Energy Storage Mater 15:257–265Google Scholar
  18. 18.
    Sun Y, Guo SH, Zhou HS (2019) Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ Sci 12:825–840Google Scholar
  19. 19.
    Yoshida H, Yabuuchi N, Kubota K et al (2014) P2-type Na(2/3)Ni(1/3)Mn(2/3-x)Ti(x)O2 as a new positive electrode for higher energy Na-ion batteries. Chem Commun (Camb) 50(28):3677–3680Google Scholar
  20. 20.
    Luo R, Wu F, Xie M, Ying Y, Zhou J, Huang Y, Ye Y, Li L, Chen RJ (2018) Habit plane-driven P2-type manganese-based layered oxide as long cycling cathode for Na-ion batteries. J Power Sources 383:80–86Google Scholar
  21. 21.
    Chen S, Han E, Han S et al (2017) P2-type Na0.67Ni0.33-xCuxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries. Ionics 23:3057–3066Google Scholar
  22. 22.
    Risthaus T, Dong Z, Xia C et al (2018) A high-capacity P2 Na2/3Ni1/3Mn 2/3O2 cathode material for sodium ion batteries with oxygen activity. J Power Sources 395:16–24Google Scholar
  23. 23.
    Li ZY, Gao R, Sun L et al (2017) Zr-doped P2-Na0.75Mn0.55Ni0.25Co0.05Fe0.10Zr0.05O2 as high-rate performance cathode material for sodium ion batteries. Electrochim Acta 223:92–99Google Scholar
  24. 24.
    Zhang XH, Pang WL, Wan F, Guo JZ, Lü HY, Li JY, Xing YM, Zhang JP, Wu XL (2016) P2-Na2/3Ni1/3Mn5/9Al1/9O2 microparticles as superior cathode material for sodium-ion batteries: enhanced properties and mechanisam via graphene connection. ACS Appl Mater Interfaces 8(32):20650–20659Google Scholar
  25. 25.
    Man HH, Gonzalo E, Sharma N et al (2016) High performance P2-phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient temperature Na-ion batteries. Chem Mater 28(1):106–116Google Scholar
  26. 26.
    Sharma N, Tapiaruiz N, Singh G et al (2015) Rate dependent performance related to crystal structure evolution of Na0.67Mn0.8Mg0.2O2 in a sodium-ion battery. Chem Mater 27(20):6976–6986Google Scholar
  27. 27.
    Yang Q, Wang PF, Guo JZ, Chen ZM, Pang WL, Huang KC, Guo YG, Wu XL, Zhang JP (2018) Advanced P2-Na2/3Ni1/3Mn7/12Fe1/12O2 cathode material with suppressed P2-O2 phase transition toward high-performance sodium-ion battery. ACS Appl Mater Interfaces 10:34272–34282Google Scholar
  28. 28.
    Han DW, Ku JH, Kim RH, Yun DJ, Lee SS, Doo SG (2014) Aluminum manganese oxides with mixed crystal structure: high-energy-density cathodes for rechargeable sodium batteries. ChemSusChem 7(7):1870–1875Google Scholar
  29. 29.
    Hwang JY, Yu TY, Sun YK et al (2018) Simultaneous MgO coating and Mg doping of Na[Ni0.5Mn0.5]O2 cathode: facile and customizable approach to high-voltage sodium-ion batteries. J Mater Chem A 6(35):16854–16862Google Scholar
  30. 30.
    Clément R, Billaud J, Armstrong R et al (2016) Structurally stable Mg-doped P2-Na2/3Mn1−yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies. Energy Environ Sci 9(10):3240–3251Google Scholar
  31. 31.
    Billaud J, Singh G, Armstrong AR et al (2014) Na0.67Mn1−xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries. Energy Environ Sci 7:1387–1391Google Scholar
  32. 32.
    He Z, Wang Z, Chen H, Huang Z, Li X, Guo H, Wang R (2015) Electrochemical performance of zirconium doped lithium rich layered Li1.2Mn0.54Ni0.13Co0.13O2 oxide with porous hollow structure. J Power Sources 299:334–341Google Scholar
  33. 33.
    Wang D, Li X, Wang Z et al (2016) Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2, cathode materials for lithium ion batteries. Electrochim Acta 188:48–56Google Scholar
  34. 34.
    Zhang YJ, Xia SB, Zhang YN, Dong P, Yan YX, Yang RM (2012) Ce-doped LiNi1/3Co(1/3-X/3)Mn1/3CeX/3O2 cathode materials for use in lithium ion batteries. Chin Sci Bull 57(32):4181–4187Google Scholar
  35. 35.
    Wen Y, Wang B, Zeng G et al (2015) Electrochemical and structural study of layered P2-type Na2/3Ni1/3Mn2/3O2 as cathode material for sodium-ion battery. Chem Asian J 46(40):661–666Google Scholar
  36. 36.
    Wu XH, Xu GL, Zhong GM et al (2016) Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries. ACS Appl Mater Interfaces 8(34):22227–22237Google Scholar
  37. 37.
    Somerville JW, House R A, Tapiaruiz N et al (2018) Identification and characterisation of high energy density P2-type Na2/3[Ni1/3−y/2Mn2/3−y/2Fey]O2 compounds for Na-ion batteries. J Mater Chem A 6(13):5271–5275Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringHuaqiao UniversityXiamenChina

Personalised recommendations