pp 1–10 | Cite as

Synthesis of vanadium oxide nanorods coated with carbon nanoshell for a high-performance supercapacitor

  • Wei Yang
  • Jinfeng Zeng
  • Zhao Xue
  • Tingting Ma
  • Jiangdong Chen
  • Ning Li
  • Hanbo ZouEmail author
  • Shengzhou ChenEmail author
Original Paper


Vanadium oxide (VOx) possesses high-potential pseudocapacitive characteristics. But it is still unsatisfactory for supercapacitors because of the poor ionic diffusivity and electrical conductivity of VOx. Nanocrystallization can decrease the distance of ion diffusion, then improve the ionic diffusivity. Suitable carbon coating could heighten conductivity and provide ion pathways. Here we synthetized V6O13@C by a sol-hydrothermal method, then pyrolyze to form VOx@C core-shell nanorod composites. The carbon nanoshells with abundant pores on the surface of vanadium oxide improve the conductivity of the nanorod electrodes and provide sufficient ion pathways. The microstructure and electrochemical measurements reveal the V6O13@C prepared from 0.8 g V2O5 raw material under 700 °C heating possesses optimal performance. As the electrode materials of a symmetric supercapacitor, such VOx@C core-shell nanorods possess a high capacity (545 F g−1 at 0.5 A g−1, 437 F g−1 at 5 A g−1) and satisfactory cyclability (88.3% retention after 2000 cycles at 0.5 A g−1). SEM and TEM show that the V6O13@C consists of uniform-size nanorods whose diameter is 20 nm with a 7-nm-thickness carbon shell layer. The favorable electrochemical performance is stemmed from unique structural features of V6O13@C nanorods. 1D structure of nanorods could significantly cut down the ion migration process as well as improving ion diffusion kinetics. Carbon nanoshell provides the high conductivity for electron, and the pores provide passageway for ion diffusion.


VOx@C core-shell nanorods Sol-hydrothermal method Supercapacitors 


Funding information

This study received financial support from the National Natural Science Foundation of China (21776051), the Natural Science Foundation of Guangdong (2018A030313423), and the Science and Technology Project of Guangzhou (201802020029).


  1. 1.
    Zhao C, Cao J, Yang Y, Chen W, Li J (2014) Facile synthesis of hierarchical porous VOx@carbon composites for supercapacitors. J Colloid Interface Sci 427:73–79CrossRefGoogle Scholar
  2. 2.
    Pan X, Zhao Y, Ren G, Fan Z (2013) Highly conductive VO2 treated with hydrogen for supercapacitors. Chem Commun 49(38):3943–3945CrossRefGoogle Scholar
  3. 3.
    Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8(3):702–730CrossRefGoogle Scholar
  4. 4.
    Mostazo-López MJ, Ruiz-Rosas R, Castro-Muñiz A, Nishihara H, Kyotani T, Morallón E, Cazorla-Amorós D (2018) Ultraporous nitrogen-doped zeolite-templated carbon for high power density aqueous-based supercapacitors. Carbon 129:510–519CrossRefGoogle Scholar
  5. 5.
    Xiao H, Qu F, Wu X (2016) Ultrathin NiO nanoflakes electrode materials for supercapacitors. Appl Surf Sci 360:8–13CrossRefGoogle Scholar
  6. 6.
    Chen C, Fan W, Ma T, Fu X (2014) Fabrication of functionalized nitrogen-doped graphene for supercapacitor electrodes. Ionics 20(10):1489–1494CrossRefGoogle Scholar
  7. 7.
    Sun W, Du Y, Wu G, Gao G, Zhu H, Shen J, Zhang K, Cao G (2019) Constructing metallic zinc–cobalt sulfide hierarchical core–shell nanosheet arrays derived from 2D metal–organic-frameworks for flexible asymmetric supercapacitors with ultrahigh specific capacitance and performance. J Mater Chem A 7(12):7138–7150CrossRefGoogle Scholar
  8. 8.
    Sun W, Gao G, Du Y, Zhang K, Wu G (2018) A facile strategy for fabricating hierarchical nanocomposites of V2O5 nanowire arrays on a three-dimensional N-doped graphene aerogel with a synergistic effect for supercapacitors. J Mater Chem A 6(21):9938–9947CrossRefGoogle Scholar
  9. 9.
    Sun W, Gao G, Zhang K, Liu Y, Wu G (2018) Self-assembled 3D N-CNFs/V2O5 aerogels with core/shell nanostructures through vacancies control and seeds growth as an outstanding supercapacitor electrode material. Carbon 132:667–677CrossRefGoogle Scholar
  10. 10.
    Deng L, Zhang G, Kang L, Lei Z, Liu C, Liu Z-H (2013) Graphene/VO2 hybrid material for high performance electrochemical capacitor. Electrochim Acta 112:448–457CrossRefGoogle Scholar
  11. 11.
    Shao J, Li X, Qu Q, Zheng H (2012) One-step hydrothermal synthesis of hexangular starfruit-like vanadium oxide for high power aqueous supercapacitors. J Power Sources 219:253–257CrossRefGoogle Scholar
  12. 12.
    Hu C, Xu H, Liu X, Zou F, Qie L, Huang Y, Hu X (2015) VO2/TiO2 nanosponges as binder-free electrodes for high-performance supercapacitors. Sci Rep 5:16012CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Yu S, Lou G, Shen Y, Chen H, Shen Z, Zhao S, Zhang J, Chai S, Zou Q (2017) Review of macroporous materials as electrochemical supercapacitor electrodes. J Mater Sci 52(19):11201–11228CrossRefGoogle Scholar
  14. 14.
    Yang J, Lan T, Liu J, Song Y, Wei M (2013) Supercapacitor electrode of hollow spherical V2O5 with a high pseudocapacitance in aqueous solution. Electrochim Acta 105:489–495CrossRefGoogle Scholar
  15. 15.
    Ma X-J, Zhang W-B, Kong L-B, Luo Y-C, Kang L (2015) VO2: from negative electrode material to symmetric electrochemical capacitor. RSC Adv 5(118):97239–97247CrossRefGoogle Scholar
  16. 16.
    Lei K, Ling J, Zhou J, Zou H, Yang W, Chen S (2019) Formation of CoS2/N, S-codoped porous carbon nanotube composites based on bimetallic zeolitic imidazolate organic frameworks for supercapacitors. Mater Res Bull 116:59–66CrossRefGoogle Scholar
  17. 17.
    Vernardou D, Louloudakis D, Spanakis E, Katsarakis N, Koudoumas E (2014) Thermochromic amorphous VO2 coatings grown by APCVD using a single-precursor. Sol Energy Mater Sol Cells 128:36–40CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Fan M, Niu F, Wu W, Huang C, Liu X, Li H, Liu X (2012) Belt-like VO2(M) with a rectangular cross section: a new route to prepare, the phase transition and the optical switching properties. Curr Appl Phys 12(3):875–879CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Zhang J, Zhang X, Mo S, Wu W, Niu F, Zhong Y, Liu X, Huang C, Liu X (2013) Direct preparation and formation mechanism of belt-like doped VO2(M) with rectangular cross sections by one-step hydrothermal route and their phase transition and optical switching properties. J Alloys Compd 570:104–113CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Huang C, Meng C (2015) Controlled synthesis of V6 O13 nanobelts by a facile one-pot hydrothermal process and their effect on thermal decomposition of ammonium perchlorate. Mater Express 5(2):105–112CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Meng C (2015) Facile one-pot hydrothermal synthesis of belt-like β-V6O13 with rectangular cross sections for Li-ion battery application. Mater Lett 160:404–407CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Zhou M, Fan M, Huang C, Chen C, Cao Y, Li H, Liu X (2011) Improvement of the electrochemical properties of V3O7·H2O nanobelts for Li battery application through synthesis of V3O7@C core-shell nanostructured composites. Curr Appl Phys 11(5):1159–1163CrossRefGoogle Scholar
  23. 23.
    Manning TD, Parkin IP, Clark RJH, Sheel D, Pemble ME, Vernadou D (2002) Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides. J Mater Chem 12(10):2936–2939CrossRefGoogle Scholar
  24. 24.
    Yin H, Yu K, Zhang Z, Zhu Z (2011) Morphology-control of VO2 (B) nanostructures in hydrothermal synthesis and their field emission properties. Appl Surf Sci 257(21):8840–8845CrossRefGoogle Scholar
  25. 25.
    Wang B, Chen S, Huang Z, Fu M (2012) Optical nonlinearities of nanostructured VO2 thin films with low phase transition temperature. Appl Surf Sci 258(14):5319–5322CrossRefGoogle Scholar
  26. 26.
    Wu C, Xie Y (2010) Promising vanadium oxide and hydroxide nanostructures: from energy storage to energy saving. Energy Environ Sci 3(9):1191CrossRefGoogle Scholar
  27. 27.
    Vernardou D, Pemble ME, Sheel DW (2004) Vanadium oxides prepared by liquid injection MOCVD using vanadyl acetylacetonate. Surf Coat Technol 188-189:250–254CrossRefGoogle Scholar
  28. 28.
    Louloudakis D, Vernardou D, Spanakis E, Katsarakis N, Koudoumas E (2013) Thermochromic vanadium oxide coatings grown by APCVD at low temperatures. Phys Procedia 46:137–141CrossRefGoogle Scholar
  29. 29.
    Balasubramanian S, Purushothaman KK (2015) Carbon coated flowery V2O5 nanostructure as novel electrode material for high performance supercapacitors. Electrochim Acta 186:285–291CrossRefGoogle Scholar
  30. 30.
    Wu Y, Gao G, Yang H, Bi W, Liang X, Zhang Y, Zhang G, Wu G (2015) Controlled synthesis of V2O5/MWCNT core/shell hybrid aerogels through a mixed growth and self-assembly methodology for supercapacitors with high capacitance and ultralong cycle life. J Mater Chem A 3(30):15692–15699CrossRefGoogle Scholar
  31. 31.
    Bi W, Gao G, Wu Y, Yang H, Wang J, Zhang Y, Liang X, Liu Y, Wu G (2017) Novel three-dimensional island-chain structured V2O5/graphene/MWCNT hybrid aerogels for supercapacitors with ultralong cycle life. RSC Adv 7(12):7179–7187CrossRefGoogle Scholar
  32. 32.
    Li H-Y, Wei C, Wang L, Zuo Q-S, Li X, Xie B (2015) Hierarchical vanadium oxide microspheres forming from hyperbranched nanoribbons as remarkably high performance electrode materials for supercapacitors. J Mater Chem A 3(45):22892–22901CrossRefGoogle Scholar
  33. 33.
    Huang Z, Zeng H, Xue L, Zhou X, Zhao Y, Lai Q (2011) Synthesis of vanadium oxide, V6O13 hollow-flowers materials and their application in electrochemical supercapacitors. J Alloys Compd 509(41):10080–10085CrossRefGoogle Scholar
  34. 34.
    Zhang Y (2017) Synthesis and characterization of hollow V2O5 microspheres for supercapacitor electrode with pseudocapacitance. Mater Sci-Pol 35(1):188–196CrossRefGoogle Scholar
  35. 35.
    Luo Z, Liu E, Hu T, Li Z, Liu T (2014) Effect of synthetic methods on electrochemical performances of VOPO4·2H2O supercapacitor. Ionics 21(1):289–294CrossRefGoogle Scholar
  36. 36.
    Saravanakumar B, Purushothaman KK, Muralidharan G (2015) High performance supercapacitor based on carbon coated V2O5 nanorods. J Electroanal Chem 758:111–116CrossRefGoogle Scholar
  37. 37.
    Wu Y, Gao G, Yang H (2015) Controlled synthesis of V2O5/MWCNTs core/shell hybrid aerogels through a mixed growth and self–assembly methodology for supercapacitors with high capacitance and ultralong cycle life. J Mater Chem A 3:15692–15699CrossRefGoogle Scholar
  38. 38.
    Li H-Y, Jiao K, Wang L, Wei C, Li X, Xie B (2014) Micelle anchored in situ synthesis of V2O3nanoflakes@C composites for supercapacitors. J Mater Chem A 2(44):18806–18815CrossRefGoogle Scholar
  39. 39.
    Bai MH, Bian LJ, Song Y, Liu XX (2014) Electrochemical codeposition of vanadium oxide and polypyrrole for high-performance supercapacitor with high working voltage. ACS Appl Mater Interfaces 6(15):12656–12664CrossRefGoogle Scholar
  40. 40.
    Qian T, Xu N, Zhou J, Yang T, Liu X, Shen X, Liang J, Yan C (2015) Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors. J Mater Chem A 3(2):488–493CrossRefGoogle Scholar
  41. 41.
    Asen P, Shahrokhian S, Iraji zad A (2017) One step electrodeposition of V2O5/polypyrrole/graphene oxide ternary nanocomposite for preparation of a high performance supercapacitor. Int J Hydrog Energy 42(33):21073–21085CrossRefGoogle Scholar
  42. 42.
    Zheng J, Zhang Y, Jing X, Liu X, Hu T, Lv T, Zhang S, Meng C (2017) Synthesis of amorphous carbon coated on V2O3, core-shell composites for enhancing the electrochemical properties of V2O3 as supercapacitor electrode. Colloids Surf A Physicochem Eng Asp 518:188–196CrossRefGoogle Scholar
  43. 43.
    Liu R, Liu E, Ding R, Liu K, Teng Y, Luo Z, Li Z, Hu T, Liu T (2015) Facile in-situ redox synthesis of hierarchical porous activated carbon@MnO2 core/shell nanocomposite for supercapacitors. Ceram Int 41(10):12734–12741CrossRefGoogle Scholar
  44. 44.
    Zhang Y, Zheng J, Hu T, Tian F, Meng C (2016) Synthesis and supercapacitor electrode of VO2 (B)/C core–shell composites with a pseudocapacitance in aqueous solution. Appl Surf Sci 371:189–195CrossRefGoogle Scholar
  45. 45.
    Kim JS, Kim RH, Yun DJ, Lee SS, Doo SG, Kim DY, Kim H (2016) Cycling stability of a VOx nanotube cathode in mixture of ethyl acetate and tetramethylsilane-based electrolytes for rechargeable Mg-ion batteries. ACS Appl Mater Interfaces 8(40):26657–26663CrossRefGoogle Scholar
  46. 46.
    Zeb A, Xie X, Yousaf AB, Imran M, Wen T, Wang Z, Guo HL, Jiang YF, Qazi IA, Xu AW (2016) Highly efficient Fenton and enzyme-mimetic activities of mixed-phase VOx nanoflakes. ACS Appl Mater Interfaces 8(44):30126–30132CrossRefGoogle Scholar
  47. 47.
    Sun X, Li Y (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem 43(5):597–601CrossRefGoogle Scholar
  48. 48.
    Dubey R, Guruviah V (2019) Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 25(4):1419–1445CrossRefGoogle Scholar
  49. 49.
    Liang Z, Wen J, Guo B, Cheng Z, Qiu Y, Xu P, Fan H, He C (2016) Improved performance of supercapacitors constructed with activated carbon papers as electrodes and vanadyl sulfate as redox electrolyte. Ionics 22(7):1253–1258CrossRefGoogle Scholar
  50. 50.
    Jia BR, Qin ML, Zhang ZL, Li SM, Zhang DY, Wu HY, Zhang L, Lu X, Qu XH (2016) Hollow porous VOx/C nanoscrolls as high-performance anodes for lithium-ion batteries. ACS Appl Mater Interfaces 8(39):25954–25961CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wei Yang
    • 1
  • Jinfeng Zeng
    • 1
  • Zhao Xue
    • 1
  • Tingting Ma
    • 1
  • Jiangdong Chen
    • 2
  • Ning Li
    • 2
  • Hanbo Zou
    • 2
    Email author
  • Shengzhou Chen
    • 1
    Email author
  1. 1.School of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhouChina
  2. 2.Guangzhou Key Laboratory for New Energy and Green CatalysisGuangzhou UniversityGuangzhouChina

Personalised recommendations