Advertisement

Ionics

pp 1–6 | Cite as

Partial oxidation of methane and generation of electricity using a PEMFC

  • J. Nandenha
  • R. M. Piasentin
  • L. M. G. Silva
  • E. H. Fontes
  • A. O. Neto
  • R. F. B. de SouzaEmail author
Short Communication
  • 9 Downloads

Abstract

The aim of this work was to produce methanol through partial oxidation of methane. The gas fed in a solid membrane reactor-PEM fuel cell type (H2/H2O2 + CH4) has been used for electrosynthesis of methanol at room temperature, with electricity cogeneration as a benefit. It was observed that the current density measured when injected CH4 in the cathode decreased about 45%. This occurs due to the conversion of methane in methanol in some ranges of potentials. In the other hand, in lower ranges of cell potential, formaldehyde was found. In this work, methane was injected on the cathode together with H2O2 solution, where it was observed that the catalytic layer adsorbed CH4 and H2O2 in active sites, which produced OH radicals that reacted with the hydrocarbon.

Keywords

Electrosynthesis Methane Methanol synthesis Solid membrane reactor PEM fuel cell 

Notes

Funding information

The authors thank the CAPES and FAPESP (2014/09087-4, 2014/50279-4, and 2017/11937-4) for the financial support.

References

  1. 1.
    Krisnandi YK, Putra BAP, Bahtiar M, Zahara AI, Howe RF (2015) Partial oxidation of methane to methanol over heterogeneous catalyst Co/ZSM-5. Procedia Chem 14:508–515.  https://doi.org/10.1016/j.proche.2015.03.068 CrossRefGoogle Scholar
  2. 2.
    Han B, Yang Y, Xu Y, Etim UJ, Qiao K, Xu B, Yan Z (2016) A review of the direct oxidation of methane to methanol. Chin J Catal 37(8):1206–1215.  https://doi.org/10.1016/S1872-2067(15)61097-X CrossRefGoogle Scholar
  3. 3.
    Khirsariya P, Mewada RK (2013) Single step oxidation of methane to methanol–towards better understanding. Procedia Eng 51:409–415.  https://doi.org/10.1016/j.proeng.2013.01.057 CrossRefGoogle Scholar
  4. 4.
    Sen A, Benvenuto MA, Lin M, Hutson AC, Basickes N (1994) Activation of methane and ethane and their selective oxidation to the alcohols in protic media. J Am Chem Soc 116(3):998–1003.  https://doi.org/10.1021/ja00082a022 CrossRefGoogle Scholar
  5. 5.
    Hameed A, Ismail IMI, Aslam M, Gondal MA (2014) Photocatalytic conversion of methane into methanol: performance of silver impregnated WO3. Appl Catal A 470:327–335.  https://doi.org/10.1016/j.apcata.2013.10.045 CrossRefGoogle Scholar
  6. 6.
    Villa K, Murcia-López S, Andreu T, Morante JR (2015) Mesoporous WO3 photocatalyst for the partial oxidation of methane to methanol using electron scavengers. Appl Catal B 163:150–155.  https://doi.org/10.1016/j.apcatb.2014.07.055 CrossRefGoogle Scholar
  7. 7.
    Zakaria Z, Kamarudin SK (2016) Direct conversion technologies of methane to methanol: an overview. Renew Sust Energ Rev 65:250–261.  https://doi.org/10.1016/j.rser.2016.05.082 CrossRefGoogle Scholar
  8. 8.
    Lee B, Sakamoto Y, Hirabayashi D, Suzuki K, Hibino T (2010) Direct oxidation of methane to methanol over proton conductor/metal mixed catalysts. J Catal 271(2):195–200.  https://doi.org/10.1016/j.jcat.2010.01.011 CrossRefGoogle Scholar
  9. 9.
    Rocha RS, Camargo L, Lanza MRV, Bertazzoli R (2010) A feasibility study of the electro-recycling of greenhouse gases: design and characterization of a (TiO2/RuO2)/PTFE gas diffusion electrode for the electrosynthesis of methanol from methane. Electrocatal 1(4):224–229.  https://doi.org/10.1007/s12678-010-0029-7 CrossRefGoogle Scholar
  10. 10.
    Rocha RS, Reis RM, Lanza MRV, Bertazzoli R (2013) Electrosynthesis of methanol from methane: the role of V2O5 in the reaction selectivity for methanol of a TiO2/RuO2/V2O5 gas diffusion electrode. Electrochim Acta 87:606–610.  https://doi.org/10.1016/j.electacta.2012.09.113 CrossRefGoogle Scholar
  11. 11.
    Lee B, Hibino T (2011) Efficient and selective formation of methanol from methane in a fuel cell-type reactor. J Catal 279(2):233–240.  https://doi.org/10.1016/j.jcat.2010.12.020 CrossRefGoogle Scholar
  12. 12.
    Nandenha J, Fontes EH, Piasentin RM, Fonseca FC, Neto AO (2018) Direct oxidation of methane at low temperature using Pt/C, Pd/C, Pt/C-ATO and Pd/C-ATO electrocatalysts prepared by sodium borohydride reduction process. J Fuel Chem Technol 46(9):1137–1145.  https://doi.org/10.1016/S1872-5813(18)30046-X CrossRefGoogle Scholar
  13. 13.
    Tomita A, Nakajima J, Hibino T (2008) Direct oxidation of methane to methanol at low temperature and pressure in an electrochemical fuel cell. Angew Chem Int Ed 47(8):1462–1464.  https://doi.org/10.1002/anie.200703928 CrossRefGoogle Scholar
  14. 14.
    Lee S, Jeong H, Chung Y-M (2018) Direct synthesis of hydrogen peroxide over Pd/C catalyst prepared by selective adsorption deposition method. J Catal 365:125–137.  https://doi.org/10.1016/j.jcat.2018.06.024 CrossRefGoogle Scholar
  15. 15.
    Sombatmankhong K, Yunus K, Fisher AC (2013) Electrocogeneration of hydrogen peroxide: confocal and potentiostatic investigations of hydrogen peroxide formation in a direct methanol fuel cell. J Power Sources 240:219–231.  https://doi.org/10.1016/j.jpowsour.2013.03.183 CrossRefGoogle Scholar
  16. 16.
    Ono K, Yasuda Y, Sekizawa K, Takeuchi N, Yoshida T, Sudoh M (2013) Evaluation of Pt/C catalyst degradation and H2O2 formation changes under simulated PEM fuel cell condition by a rotating ring-disk electrode. Electrochim Acta 97:58–65.  https://doi.org/10.1016/j.electacta.2013.02.070 CrossRefGoogle Scholar
  17. 17.
    De Souza RFB, Parreira LS, Silva JCM, Simões FC, Calegaro ML, Giz MJ, Camara GA, Neto AO, Santos MC (2011) PtSnCe/C electrocatalysts for ethanol oxidation: DEFC and FTIR “in-situ” studies. Int J Hydrog Energy 36(18):11519–11527.  https://doi.org/10.1016/j.ijhydene.2011.05.016 CrossRefGoogle Scholar
  18. 18.
    Assumpção MHMT, Da Silva SG, De Souza RFB, Buzzo GS, Spinacé EV, Santos MC, Neto AO, Silva JCM (2014) Investigation of PdIr/C electrocatalysts as anode on the performance of direct ammonia fuel cell. J Power Sources 268:129–136.  https://doi.org/10.1016/j.jpowsour.2014.06.025 CrossRefGoogle Scholar
  19. 19.
    Neto AO, Nandenha J, Assumpção MHMT, Linardi M, Spinacé EV, De Souza RFB (2013) In situ spectroscopy studies of ethanol oxidation reaction using a single fuel cell/ATR-FTIR setup. Int J Hydrog Energy 38(25):10585–10591.  https://doi.org/10.1016/j.ijhydene.2013.06.026 CrossRefGoogle Scholar
  20. 20.
    Boyaci IH, Genis HE, Guven B, Tamer U, Alper N (2012) A novel method for quantification of ethanol and methanol in distilled alcoholic beverages using Raman spectroscopy. J Raman Spectrosc 43(8):1171–1176.  https://doi.org/10.1002/jrs.3159 CrossRefGoogle Scholar
  21. 21.
    Morales-Leal FJ, Rivera De la Rosa J, Lucio-Ortiz CJ, Bustos Martínez D, De Haro Del Rio DA, Garza-Navarro MA, Martínez-Vargas DX, Garcia CD (2018) Appl Catal A 562:184–197.  https://doi.org/10.1016/j.apcata.2018.05.032 CrossRefGoogle Scholar
  22. 22.
    Sharma AK, Kaur B (2018) Chalcogenide fiber-optic SPR chemical sensor with MoS2 monolayer, polymer clad, and polythiophene layer in NIR using selective ray launching. Opt Fiber Technol 43:163–168.  https://doi.org/10.1016/j.yofte.2018.05.003 CrossRefGoogle Scholar
  23. 23.
    Thungon PD, Kakoti A, Ngashangva L, Goswami P (2017) Advances in developing rapid, reliable and portable detection systems for alcohol. Biosens Bioelectron 97:83–99.  https://doi.org/10.1016/j.bios.2017.05.041 CrossRefGoogle Scholar
  24. 24.
    Hamada K, Morishita H (1975) Sci Bull Fac Educ Nagasaki Univ 26:39–47Google Scholar
  25. 25.
    Kannan PP, Karthick NK, Mahendraprabu A, Kumbharkhane AC, Joshi YS, Arivazhagan G (2019) FTIR spectroscopy, quantum chemical calculations and time domain reflectometry studies on the behavior of methanol molecules in the environment of dibutyl ether. J Mol Struct 1183:60–69.  https://doi.org/10.1016/j.molstruc.2019.01.062 CrossRefGoogle Scholar
  26. 26.
    Gaca-Zając KZ, Smith BR, Nordon A, Fletcher AJ, Johnston K, Sefcik J (2018) Investigation of IR and Raman spectra of species present in formaldehyde-water-methanol systems. Vib Spectrosc 97:44–54.  https://doi.org/10.1016/j.vibspec.2018.05.001 CrossRefGoogle Scholar
  27. 27.
    Beckingham BS, Lynd NA, Miller DJ (2018) Monitoring multicomponent transport using in situ ATR FTIR spectroscopy. J Membr Sci 550:348–356.  https://doi.org/10.1016/j.memsci.2017.12.072 CrossRefGoogle Scholar
  28. 28.
    Millikan RC, Pitzer KS (1958) The infrared spectra of dimeric and crystalline formic acid. J Am Chem Soc 80(14):3515–3521.  https://doi.org/10.1021/ja01547a007 CrossRefGoogle Scholar
  29. 29.
    Scarano D, Bertarione S, Spoto G, Zecchina A, Otero Areán C (2001) FTIR spectroscopy of hydrogen, carbon monoxide, and methane adsorbed and co-adsorbed on zinc oxide. Thin Solid Films 400(1):50–55.  https://doi.org/10.1016/S0040-6090(01)01472-9 CrossRefGoogle Scholar
  30. 30.
    Wang L-K, Chen G-J, Han G-H, Guo X-Q, Guo T-M (2003) Experimental study on the solubility of natural gas components in water with or without hydrate inhibitor. Fluid Phase Equilib 207(1):143–154.  https://doi.org/10.1016/S0378-3812(03)00009-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • J. Nandenha
    • 1
  • R. M. Piasentin
    • 1
  • L. M. G. Silva
    • 1
    • 2
  • E. H. Fontes
    • 1
  • A. O. Neto
    • 1
  • R. F. B. de Souza
    • 1
    Email author
  1. 1.Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SPSão PauloBrazil
  2. 2.UFABCSanto AndréBrazil

Personalised recommendations