pp 1–9 | Cite as

Green one-step synthesis of SnS2 quantum dots/S-doped reduced graphene oxide composite for superior lithium storage

  • Bin Zhang
  • Xiaozhong ZhouEmail author
  • Hui Peng
  • Chunyan Zhu
  • Wuqiang Wang
  • Ziqiang LeiEmail author
Original Paper


SnS2 has been considered as one of the most potential anode materials for lithium storage due to its high theoretical capacity. However, the SnS2-based electrodes still suffer from unsatisfied electrochemical lithium-storage performance due to the intrinsic poor conductivity, large volume change during cycles, and great irreversibility of the initial conversion reactions. Herein, SnS2 quantum dots (QDs) are uniform fixed in S-doped reduced graphene oxide (rGO) nanosheets or nanoscrolls by a simple green one-step hydrothermal method, which deliver superior lithium-storage performance, such as a high initial reversible capacity of 1151 mA h g−1 at a current density of 200 mA g−1, high capacity retention of 87.7% after 300 cycles at 500 mA g−1, and superior rate capacity of 314 mA h g−1 at 5000 mA g−1.


SnS2 Reduced graphene oxide Quantum dots Lithium-ion battery 


Funding information

This work was financially supported by the Natural Science Foundation of China (grant nos. 51462032, 51863019), the Foundation for Distinguished Young Scholars of Gansu Province (17JR5RA066), the program for Changjiang Scholars, and Innovative Research Team in University (IRT15R56).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11581_2019_3175_MOESM1_ESM.pdf (807 kb)
ESM 1 (PDF 807 kb)


  1. 1.
    Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603CrossRefGoogle Scholar
  2. 2.
    Xu Q, Li J-Y, Sun J-K, Yin Y-X, Wan L-J, Guo Y-G (2017) Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv Energy Mater 7(3):1601481CrossRefGoogle Scholar
  3. 3.
    Xu Q, Sun J-K, Yin Y-X, Guo Y-G (2018) Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes. Adv Funct Mater 28(8):1705235CrossRefGoogle Scholar
  4. 4.
    Zhang YF, Zhao CY, Zeng ZH, Ang JM, Che BY, Wang Z, Lu XH (2018) Graphene nanoscroll/nanosheet aerogels with confined SnS2 nanosheets: simultaneous wrapping and bridging for high-performance lithium-ion battery anodes. Electrochim Acta 278:156–164CrossRefGoogle Scholar
  5. 5.
    Jiang Y, Feng YZ, Xi BJ, Kai SS, Mi K, Feng J, Zhang JH, Xiong SL (2016) Ultrasmall SnS2 nanoparticles anchored on well-distributed nitrogen-doped graphene sheets for Li-ion and Na-ion batteries. J Mater Chem A 4(27):10719–10726CrossRefGoogle Scholar
  6. 6.
    Wu L, Zheng J, Wang L, Xiong XH, Shao YY, Wang G, Wang J-H, Zhong SK, Wu MH (2019) PPy-encapsulated SnS2 nanosheets stabilized by defects on TiO2 support as durable anode material for lithium ion battery. Angew Chem Int Ed 58:811–815CrossRefGoogle Scholar
  7. 7.
    Hu RZ, Ouyang YP, Liang T, Wang H, Liu J, Chen J, Yang CH, Yang LC, Zhu M (2017) Stabilizing the nanostructure of SnO2 anodes by transition metals: a route to achieve high initial coulombic efficiency and stable capacities for lithium storage. Adv Mater 29(13):1605006CrossRefGoogle Scholar
  8. 8.
    Li XC, G GL, Qin N, Deng Z, Lu ZG, Shen D, Zhao X, Li Y, Su BL, Wang HE (2018) SnS2/TiO2 nanohybrids chemically bonded on nitrogen-doped graphene for lithium-sulfur batteries: synergy of vacancy defects and heterostructure. Nanoscale 10(33):15505–15512CrossRefGoogle Scholar
  9. 9.
    Jiang Y, Wei M, Feng JK, Ma YC, Xiong SL (2016) Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy Environ Sci 9(4):1430–1438CrossRefGoogle Scholar
  10. 10.
    Zhou TF, Pang WK, Zhang CF, Yang JP, Chen ZX, Liu HK, Guo ZP (2014) Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8(8):8323–8333CrossRefGoogle Scholar
  11. 11.
    Meng JS, Liu ZA, Niu CJ, Xu LH, Wang XP, Li Q, Wei XJ, Yang W, Huang L, Mai LQ (2018) General oriented assembly of uniform carbon-confined metal oxide nanodots on graphene for stable and ultrafast lithium storage. Mater Horiz 5(1):78–85CrossRefGoogle Scholar
  12. 12.
    Zhao KN, Zhang L, Xia R, Dong YF, Xu WW, Niu CJ, He L, Yan MY, Qu LB, Mai LQ (2016) SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Small 12(5):588–594CrossRefGoogle Scholar
  13. 13.
    Lian QW, Zhou G, Zeng XH, Wu C, Wei YH, Cui C, Wei WF, Chen LB, Li CC (2016) Carbon coated SnS/SnO2 heterostructures wrapping on CNFs as an improved-performance anode for Li-ion batteries: lithiation-induced structural optimization upon cycling. ACS Appl Mater Interfaces 8(44):30256–30263CrossRefGoogle Scholar
  14. 14.
    Balogun M-S, Qiu WT, Jian JH, Huang YC, Luo Y, Yang H, Liang CL, Lu XH, Tong YX (2015) Vanadium nitride nanowire supported SnS2 nanosheets with high reversible capacity as anode material for lithium ion batteries. ACS Appl Mater Interfaces 7(41):23205–23215CrossRefGoogle Scholar
  15. 15.
    Bhaskar A, Deepa M, Rao TN (2015) Tin disulfide nanoflowers versus nanosheets as anodes in lithium-ion batteries: how the nanostructure controls performance. Electrochim Acta 184:239–249CrossRefGoogle Scholar
  16. 16.
    Zhang F, Xia C, Zhu JJ, Ahmed B, Liang HF, Velusamy DB, Schwingenschlögl U, Alshareef HN (2016) SnSe2 2D anodes for advanced sodium ion batteries. Adv Energy Mater 6(22):1601188CrossRefGoogle Scholar
  17. 17.
    Shi JR, Wang YP, Su Q, Cheng FY, Kong XZ, Lin JD, Zhu T, Liang SQ, Pan AQ (2018) N-S co-doped C@SnS nanoflakes/graphene composite as advanced anode for sodium-ion batteries. Chem Eng J 353(1):606–614CrossRefGoogle Scholar
  18. 18.
    Wang YP, Zhang YF, Shi JR, Pan AQ, Jiang F, Liang SQ, Cao GZ (2018) S-doped porous carbon nanospheres confined SnS with enhanced electrochemical performance for sodium-ion batteries. J Mater Chem A 6(37):18286–18292CrossRefGoogle Scholar
  19. 19.
    Wang YP, Zhang YF, Shi JR, Kong XZ, Cao XX, Liang SQ, Cao GZ, Pan AQ (2019) Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. Energy Storage Mater 18:366–374CrossRefGoogle Scholar
  20. 20.
    Zeng LX, Huang XX, Chen X, Zheng C, Qian QR, Chen QH, Wei MD (2016) Ge/GeO2-ordered mesoporous carbon nanocomposite for rechargeable lithium-ion batteries with a long-term cycling performance. ACS Appl Mater Interfaces 8(1):232–239CrossRefGoogle Scholar
  21. 21.
    Zhou XZ, Zhang ZF, Lu XF, Lv XY, Ma GF, Wang QT, Lei ZQ (2017) Sb2O3 nanoparticles anchored on graphene sheets via alcohol dissolution–reprecipitation method for excellent lithium-storage properties. ACS Appl Mater Interfaces 9(40):34927–34936CrossRefGoogle Scholar
  22. 22.
    Zhou XZ, Zhang ZF, Wang JW, Wang QT, Ma GF, Lei ZQ (2017) Sb2O4/reduced graphene oxide composite as high-performance anode material for lithium ion batteries. J Alloys Compd 699:611–618CrossRefGoogle Scholar
  23. 23.
    Chen C, X XQ, Anasori B, Sarycheva A, Makaryan T, Zhao MQ, Urbankowski P, Miao L, Jiang JJ, Gogotsi Y (2018) MoS2-on-nXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew Chem Int Ed 57(7):1846–1850CrossRefGoogle Scholar
  24. 24.
    Zhang ZW, Li ZQ, Yin LW (2018) Hollow prism NiCo2S4 linked with interconnected reduced graphene oxide as a high performance anode material for sodium and lithium ion batteries. New J Chem 42(2):1467–1476CrossRefGoogle Scholar
  25. 25.
    Liu L, Gao R, Sun LM, Han SB, Chen DF, Hu ZB, Liu XF (2016) Ultrahigh cycling stability and rate capability of ZnFe2O4@graphene hybrid anode prepared through a facile syn-graphenization strategy. New J Chem 40(4):3139–3146CrossRefGoogle Scholar
  26. 26.
    Liu SY, Lu X, Xie J, Cao GS, Zhu TJ, Zhao XB (2013) Preferential c-axis orientation of ultrathin SnS2 nanoplates on graphene as high-performance anode for Li-ion batteries. ACS Appl Mater Interfaces 5(5):1588–1595CrossRefGoogle Scholar
  27. 27.
    Zhang QQ, Li R, Zhang MM, Zhang BL, Gou XL (2014) SnS2/reduced graphene oxide nanocomposites with superior lithium storage performance. Electrochim Acta 115:425–433CrossRefGoogle Scholar
  28. 28.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRefGoogle Scholar
  29. 29.
    Qu BH, Ma CZ, Ji G, Xu CH, Xu J, Meng YS, Wang TH, Lee JY (2014) Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv Mater 26(23):3854–3859CrossRefGoogle Scholar
  30. 30.
    Fan LL, Li XF, Song XS, Hu NN, Xiong DB, Koo A, Sun XL (2018) Promising dual-doped graphene aerogel/SnS2 nanocrystal building high performance sodium ion batteries. ACS Appl Mater Interfaces 10(3):2637–2648CrossRefGoogle Scholar
  31. 31.
    Cui J, Yao SS, Lu Z, Huang J-Q, Chong WG, Ciucci F, Kim J-K (2018) Revealing pseudocapacitive mechanisms of metal dichalcogenide SnS2/graphene-CNT aerogels for high-energy Na hybrid capacitors. Adv Energy Mater 8(10):1702488CrossRefGoogle Scholar
  32. 32.
    Li W, Zhou M, Li HM, Wang KL, Cheng SJ, Jiang K (2015) High performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci 8(10):2916–2921CrossRefGoogle Scholar
  33. 33.
    Wang RH, Xu CH, Sun J, Gao L, Yao HL (2014) Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage. ACS Appl Mater Interfaces 6(5):3427–3436CrossRefGoogle Scholar
  34. 34.
    Hu RZ, Ouy YP, Liang T, Tang X, Yuan B, Liu J, Zhang L, Yang LC, Zhu M (2017) Inhibiting grain coarsening and inducing oxygen vacancy: the roles of Mn in achieving highly reversible conversion reaction and long life SnO2-Mn-graphite ternary anode. Energy Environ Sci 10(9):2017–2029CrossRefGoogle Scholar
  35. 35.
    Tu FZ, Xu X, Wang PZ, Si L, Zhou XS, Bao JC (2017) A few-layer SnS2/reduced graphene oxide sandwich hybrid for efficient sodium storage. J Phys Chem C 121(6):3261–3269CrossRefGoogle Scholar
  36. 36.
    Zuo SY, Li DR, Wu ZG, Sun YQ, Lu QH, Wang FY, Zhuo RF, Yan D, Wang J, Yan PX (2018) SnO2/graphene oxide composite material with high rate performance applied in lithium storage capacity. Electrochim Acta 264:61–68CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal UniversityLanzhouPeople’s Republic of China

Personalised recommendations