Advertisement

Ionics

, Volume 25, Issue 9, pp 4517–4522 | Cite as

Porous functionalized carbon as anode for a long cycling of sodium-ion batteries

  • Zhi Chen
  • Dejian Zhu
  • Jialin Li
  • Danni Liang
  • Mingqiang Liu
  • Zhihui Hu
  • Xibao Li
  • Zhijun FengEmail author
  • Juntong HuangEmail author
Short Communication
  • 79 Downloads

Abstract

Due to various advantages, such as rich resources, sodium (Na) is considered an alternative to replace lithium (Li) for carbon nanomaterials. Na has a larger radius, which largely limits the application. With the analysis and discussion, it found that porous carbon with functional groups benefited for energy storage, so functional porous carbon was obtained by spray drying with subsequent annealing and nitric acid etching. Moreover, the surface was modified by functional groups, which can improve wettability and enhance cycling stability. So, as the anodes for sodium-ion batteries (SIBs), the porous C electrode can remain a discharge capacity of 150 mA h g−1 at 1 A g−1 after 1000 cycles. This study opens a pathway to the design of electrodes and hopes that it can apply in other relevant fields.

Keywords

Sodium-ion battery Porous C Functional groups Surface modification 

Notes

Funding information

This work was financially supported by the National Science Foundation of China (Grant No. 51772140), the Natural Science Foundation of Jiangxi Province (Grant No.20171ACB21033) PHD Starting Foundation of Nanchang Hangkong University (EA201801233), and the Science and Technology Project of Jiangxi Province Education Department (DA201901163).

References

  1. 1.
    Guo D, Dou S, X Li JTX, Wang SY, Lai LF, k Liu H, Ma JM, Dou SX (2016) Hierarchical MnO2/rGO hybrid nanosheets as an efficient electrocatalyst for the oxygen reduction reaction. Int, J. Hydrog Energy 41:5260–5268CrossRefGoogle Scholar
  2. 2.
    Ye H, Xin S, Yin YX, Guo YG (2017) Advanced porous carbon materials for high-efficient lithium metal anodes. Adv Energy Mater 7:1700530CrossRefGoogle Scholar
  3. 3.
    Wang L, Zhang G, Zhang X, Shi H, Zeng W, Zhang H, Liu Q, Li C, Duan H (2017) Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors. J Mater Chem A 5:14801–14810CrossRefGoogle Scholar
  4. 4.
    Zhang X, Wang L, Wei Z, Zhang G, Zeng W, J F, Hui Q, Duan H (2018) Ultra-stable asymmetric supercapacitors constructed by in-situ electro-oxidation activated Ni@CNTs composites. ChemElectroChem 5:3213–3221CrossRefGoogle Scholar
  5. 5.
    Tang Z, Zhang G, Zhang H, Wang L, Shi H, Wei D, Duan H (2018) MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors. Energy Storage Mater 10:75–84CrossRefGoogle Scholar
  6. 6.
    Lim S, Kim JH, Yamada Y, Munakata H, Lee YS, Kim SS, Kanamura K (2017) Improvement of rate capability by graphite foam anode for Li secondary batteries. J Power Sources 355:164–170CrossRefGoogle Scholar
  7. 7.
    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRefGoogle Scholar
  8. 8.
    Xu J, Dou S, Liu H, Dai L (2013) Cathode materials for next generation lithium ion batteries. Nano Energy 2:439–442CrossRefGoogle Scholar
  9. 9.
    Serras P, Palomares V, Goñi A, de Muro IG, Kubiak P, Lezama L, Rojo T (2012) High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F 3-2x. J Mater Chem 22:22301–22308CrossRefGoogle Scholar
  10. 10.
    Zhao Y, Adair KR, Sun X (2018) Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ Sci 11:2673–2695CrossRefGoogle Scholar
  11. 11.
    P L, Sun Y, Xiang H, Liang X, Yu Y (2018) 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv Energy Mater 8:1702434CrossRefGoogle Scholar
  12. 12.
    Goktas M, Akduman B, Huang P, Balducci A, Adelhelm P (2018) Temperature-induced activation of graphite co-intercalation reactions for glymes and crown ethers in sodium-ion batteries. J Phys Chem C 122:26816–26824CrossRefGoogle Scholar
  13. 13.
    Kachmar A, Goddard WA III (2018) Free energy landscape of sodium solvation into graphite. J Phys Chem C 122:20064–20072CrossRefGoogle Scholar
  14. 14.
    Liu Y, Merinov BV, Goddard WA (2016) Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc Natl A Sci 113:3735–3739CrossRefGoogle Scholar
  15. 15.
    Lv W, Wen F, Xiang J, Zhao J, Li L, Wang L, Liu ZY, Tian Y (2015) Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochim Acta 176:533–541CrossRefGoogle Scholar
  16. 16.
    Han P, Han X, Yao J, Liu Z, Cao X, Cui G (2015) Flexible graphite film with laser drilling pores as novel integrated anode free of metal current collector for sodium ion battery. Electrochem Commun 61:84–88CrossRefGoogle Scholar
  17. 17.
    White RJ, Luque R, Budarin VL, Clark JH, Macquarrie DJ (2009) Supported metal nanoparticles on porous materials. Methods and applications. Chem Soc Rev 38:481–494CrossRefGoogle Scholar
  18. 18.
    Zou K, Cai P, Liu C, Li J, Gao X, Xu L, Zou G, Hou H, Liu Z, Ji X (2019) Kinetic well-matched full-carbon sodium-ion capacitor. J Mater Chem A 7:13540–13549CrossRefGoogle Scholar
  19. 19.
    Zou G, Hou H, Foster CW, Banks CE, Guo T, Jiang Y, zhang Y, Ji X (2018) Advanced hierarchical vesicular carbon Co-doped with S, P, N for high-rate sodium storage. Adv Sci 5:1800241CrossRefGoogle Scholar
  20. 20.
    Hou H, Banks CE, Jing M, Zhang Y, Ji X (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27:7861–7866CrossRefGoogle Scholar
  21. 21.
    Chen Z, Wang TH, Zhang M, Cao G-Z (2017) A phase-separation route to synthesize porous CNTs with excellent stability for Na+ storage. Small 13:1604045CrossRefGoogle Scholar
  22. 22.
    Zhang G, Song Y, Zhang H, Xu J, Duan H, Liu J (2016) Radially aligned porous carbon nanotube arrays on carbon fibers: a hierarchical 3D carbon nanostructure for high-performance capacitive energy storage. Adv Funct Mater 26:3012–3020CrossRefGoogle Scholar
  23. 23.
    Hong JY, Wie JJ, Xu Y, Park HS (2015) Chemical modification of graphene aerogels for electrochemical capacitor applications. Phys Chem Chem Phys 17:30946–30962CrossRefGoogle Scholar
  24. 24.
    Tian W, Zhang H, Sun H, Suvorova A, Saunders M, Tade M, Wang S (2016) Heteroatom (N or N-S)-doping induced layered and honeycomb microstructures of porous carbons for CO2 capture and energy applications. Adv Funct Mater 26:8651–8661CrossRefGoogle Scholar
  25. 25.
    Yang J, Zhou X, Wu D, Zhao X, Zhou Z (2017) S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv Mater 29:1604108CrossRefGoogle Scholar
  26. 26.
    Bulusheva LG, Okotrub AV, Kurenya AG, Zhang H, Zhang H, Chen X, Song H (2011) Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 49:4013–4023CrossRefGoogle Scholar
  27. 27.
    Xiong P, Zhao X, Xu Y (2018) Nitrogen-doped carbon nanotubes derived from metal-organic frameworks for potassium-ion battery anodes. ChemSusChem 11:202–208CrossRefGoogle Scholar
  28. 28.
    Shen Z, Hu Y, Chen Y, Chen R, He X, Geng L, Zhang X, Wu K, Shen Z, Hu Y, Chen Y, Chen R, He X, Geng L, Zhang X, Wu K (2016) Excimer ultraviolet-irradiated carbon nanofibers as advanced anodes for long cycle life lithium-ion batteries. Small 12:5269CrossRefGoogle Scholar
  29. 29.
    Chen Z, Zhang M (2019) K+ storage in porous red blood cell-like hollow carbon. J Alloys Compd 779:505–510CrossRefGoogle Scholar
  30. 30.
    Byon HR, Gallant BM, Lee SW, Shao HY (2013) Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance lithium batteries. Adv Funct Mater 23:1037–1045CrossRefGoogle Scholar
  31. 31.
    Matsoso BJ, Ranganathan K, Mutuma BK, Lerotholi T, Jones G, Coville NJ (2016) Time-dependent evolution of the nitrogen configurations in N-doped graphene films. RSC Adv 6:106914–106920CrossRefGoogle Scholar
  32. 32.
    Wang L, Zhang G, Liu Q, Duan H (2018) Recent progress in Zn-based anodes for advanced lithium ion batteries. Mater Chem Front 2:1414–1435CrossRefGoogle Scholar
  33. 33.
    Chen Z, Yang T, Shi H, Wang T, Zhang M, Cao G (2017) Single nozzle electrospinning synthesized MoO2@C core shell nanofibers with high capacity and long-term stability for lithium-ion storage. Adv Mater Interfaces 4:1600816CrossRefGoogle Scholar
  34. 34.
    Stevens D, Dahn J (2001) The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 148:A803–A811CrossRefGoogle Scholar
  35. 35.
    Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162(2):1379–1394CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhi Chen
    • 1
  • Dejian Zhu
    • 1
  • Jialin Li
    • 1
  • Danni Liang
    • 1
  • Mingqiang Liu
    • 1
  • Zhihui Hu
    • 1
  • Xibao Li
    • 1
  • Zhijun Feng
    • 1
    Email author
  • Juntong Huang
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringNanchang Hangkong UniversityNanchangChina

Personalised recommendations