pp 1–7 | Cite as

High-capacitance supercapacitor based on nitrogen-doped porous carbons-sandwiched graphene hybrid frameworks

  • Xiaojie ZhangEmail author
  • Xiaoyan Gao
  • Zhanyu Wu
  • Minghai Zhu
  • Qinghai Jiang
  • Shoubin Zhou
  • Yi Huang
  • Zhonghao RaoEmail author
Original Paper


Supercapacitor, as a new energy storage system, has attracted increasing interests owing to its fast charge/discharge process, high-power density, and long-cycling life. However, exploring high-capacitance porous carbons as electrode materials has caused enormous attention around the world. Herein, we propose a nitrogen-doped porous carbon (NPC)-sandwiched 3D graphene (NPC-3DG) by direct freeze-drying of ZIF-8/graphene oxide mixed solution followed by a high-temperature thermal treatment. The characterizations of scanning electron microscopy, N2 adsorption/desorption isotherms, and X-ray photoelectron spectroscopy proves the sandwich structured frameworks of NPC-3DG with a high specific surface area of 726.9 m2 g−1 and a nitrogen content of 3.2 wt%. When used as capacitive electrode materials (in three-electrode system), the resultant NPC-3DG exhibited a high capacitance of 530.1 F g−1 at a current density of 1 A g−1. Moreover, the capacitance still maintains a high value of 337.2 F g−1 even at a high current density of 20 A g−1.


Supercapacitor Metal-organic frameworks 3D graphene Nitrogen porous carbons Capacitances 


Funding information

This research was supported by the fund of Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu (HPK201805), the Important Project of Anhui Provincial Education Department (KJ2018A0446), Doctoral Fund of Ministry of Education of China (No. 2018M642356), the initiate fund of Huaiyin Institute of Technology (Z301B18545, Z301B19512), Qing Lan Project of Jiangsu Province, “333 high level talents training project” of Jiangsu province and “Six Talent Peak” high-level talents of Jiangsu Province, Innovative Research Team of Anhui Provincial Education Department (2016SCXPTTD) and Key Discipline of Material Science and Engineering of Suzhou University (2017XJZDXK3).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11581_2019_3154_MOESM1_ESM.doc (119 kb)
ESM 1 (DOC 119 kb)


  1. 1.
    Yoon H, Kim H-J, Yoo JJ, Yoo CY, Park JH, Lee YA, Cho WK, Han YK, Kim DH (2015) Pseudocapacitive slurry electrodes using redox-active quinone for high-performance flow capacitors: an atomic-level understanding of pore texture and capacitance enhancement. J Mater Chem A 3:23323–23332CrossRefGoogle Scholar
  2. 2.
    Cong H-P, Ren X-C, Wang P, Yu S-H (2013) Flexible graphene–polyaniline composite paper for high-performance supercapacitor. Energy Environ Sci 6(4):1185–1191Google Scholar
  3. 3.
    Mondal S, Rana U, Malik S (2015) Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chem Commun 51:12365–12368CrossRefGoogle Scholar
  4. 4.
    Cui X, Lv R, Sagar RUR, Liu C, Zhang Z (2015) Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor. Electrochim Acta 169: 342–350Google Scholar
  5. 5.
    Xu X, Wang M, Liu Y, Li Y, Lu T, Pan L (2016) In situ construction of carbon nanotubes/nitrogen-doped carbon polyhedra hybrids for supercapacitors. Energy Storage Mater 5:132–138.
  6. 6.
    Xu X, Allah AE, Wang C, Tan H, Farghali AA, Khedr MH, Malgras V, Yang T, Yamauchi Y (2019) Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination. Chem Eng J 362:887–896. CrossRefGoogle Scholar
  7. 7.
    Xu X, Tan H, Wang Z, Wang C, Pan L, Kaneti YV, Yang T, Yamauchi Y (2019) Extraordinary capacitive deionization performance of highlyordered mesoporous carbon nano-polyhedra for brackish water desalination. Environ Sci: Nano 6(3):981–989.
  8. 8.
    Niu H, Luo B, Xin N, Liu Y, Shi W (2019) N-doped hollow carbon spheres intercalated graphene film induced macroporous frameworks for ultrahigh volumetric energy density supercapacitor. J Alloy Compd 785:374–381. CrossRefGoogle Scholar
  9. 9.
    Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531Google Scholar
  10. 10.
    Zhang X, Zhu G, Wang M, Li J, Lu T, Pan L (2017) Covalent-organic-frameworks derived N-doped porous carbon materials as anode for superior long-life cycling lithium and sodium ion batteries. Carbon 116:686–694. CrossRefGoogle Scholar
  11. 11.
    Zhou Y, Liu C, Li X, Sun L, Wu D, Li J, Huo P, Wang H (2019) Chemical precipitation synthesis of porous Ni2P2O7 nanowires for supercapacitor. J Alloy Compd 790:36–41. CrossRefGoogle Scholar
  12. 12.
    Kim T, Jung G, Yoo S, Suh KS, Ruoff RS (2013) Activated graphene-based carbons as supercapacitor electrodes with macro-and mesopores. ACS Nano 7(8):6899–6905Google Scholar
  13. 13.
    Geleta GS, Zhao Z, Wang Z (2018) Electrochemical Biosensors for Detecting Microbial Toxins by Graphene-Based Nanocomposites. J Anal Test 2(1):20–25.
  14. 14.
    Li HB, Lu T, Pan LK, Zhang YP, Sun Z (2009) Electrosorption behavior of graphene in NaCl solutions. J Mater Chem 19(37):6773–6779.
  15. 15.
    Yan P, Zhang X, Hou M, Zhang R, Liu K, Liu T, Liu Y (2018) Fabrication and enhanced electrochemical performance of a nitrogen-doped porous graphene/nanometer-sized carbide-derived carbon composite for supercapacitors. Ionics 24:3949–3955. CrossRefGoogle Scholar
  16. 16.
    Xu X, Pan L, Liu Y, Lu T, Sun Z, Chua DH (2015) Facile synthesis of novel graphene sponge for high performance capacitive deionization. Sci Rep 5:8458Google Scholar
  17. 17.
    Xu X, Liu Y, Wang M, Zhu C, Lu T, Zhao R, Pan L (2016) Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization. Electrochim. Acta 193:88–95.
  18. 18.
    Dong X-C, Xu H, Wang X-W, Huang YX, Chan-Park MB, Zhang H, Wang LH, Huang W, Chen P (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213CrossRefGoogle Scholar
  19. 19.
    Xu X, Liu Y, Lu T, Sun Z, Pan L (2015) Rational design and fabrication of graphene/carbon nanotubes hybrid sponge for high performance capacitive deionization. J Mater Chem A 3: 13418–13425Google Scholar
  20. 20.
    Zhao Y, Liu J, Hu Y, Cheng H, Hu C, Jiang C, Jiang L, Cao A, Qu L (2013) Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv Mater 25:591–595CrossRefGoogle Scholar
  21. 21.
    Ma D, Li Y, Wu M, Deng L, Ren X, Zhang P (2016) Enhanced cycling stability of Li-rich nanotube cathodes by 3D graphene hierarchical architectures for Li-ion batteries. Acta Mater 112:11–19CrossRefGoogle Scholar
  22. 22.
    Hu B, Jing Z, Fan J, Yao G, Jin F (2016) One-step hydrothermal synthesis of honeycomb 3D graphene-like Co 9 S 8 and its catalytic characteristics for NaHCO 3 reduction by H 2 S. Catal Today 263: 128–135Google Scholar
  23. 23.
    Zhang Y, Ma M, Yang J, Huang W, Dong X (2014) Graphene-based three-dimensional hierarchical sandwich-type architecture for high performance supercapacitors. RSC Adv 4:8466–8471CrossRefGoogle Scholar
  24. 24.
    Dong X, Ma Y, Zhu G, Huang Y, Wang J, Chan-Park MB, Wang L, Huang W, Chen P (2012) Synthesis of graphene–carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing. J Mater Chem 22:17044CrossRefGoogle Scholar
  25. 25.
    Wang L, Huang Y, Li C, Chen J, Sun X (2015) A facile one-pot method to synthesize a three-dimensional graphene@ carbon nanotube composite as a high-efficiency microwave absorber. Phys Chem Chem Phys 17(3):2228–2234Google Scholar
  26. 26.
    He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E (2012) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7(1):174–182Google Scholar
  27. 27.
    Zhang J, Li P, Wang Z, Qiao J, Rooney D, Sun W, Sun K (2015) Three-dimensional graphene–Co3O4 cathodes for rechargeable Li–O2batteries. J Mater Chem A 3:1504–1510CrossRefGoogle Scholar
  28. 28.
    Dong X, Wang J, Wang J, Chan-Park MB, Li X, Wang L, Huang W, Chen P (2012) Supercapacitor electrode based on three-dimensional graphene–polyaniline hybrid. Mater Chem Phys 134:576–580CrossRefGoogle Scholar
  29. 29.
    Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AO, Snurr RQ, O'Keeffe M, Kim J, Yaghi OM (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428CrossRefGoogle Scholar
  30. 30.
    Yin Z, Zhou Y-L, Zeng M-H, Kurmoo M (2015) The concept of mixed organic ligands in metal–organic frameworks: design, tuning and functions. Dalton T 44:5258–5275CrossRefGoogle Scholar
  31. 31.
    Li M, Li D, O’Keeffe M, Yaghi OM (2013) Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem Rev 114(2):1343–1370Google Scholar
  32. 32.
    Salunkhe RR, Kamachi Y, Torad NL, Hwang SM, Sun Z, Dou SX, Kim JH, Yamauchi Y (2014) Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J Mater Chem A 2:19848–19854CrossRefGoogle Scholar
  33. 33.
    Tang J, Salunkhe RR, Liu J, Torad NL, Imura M, Furukawa S, Yamauchi Y (2015) Thermal conversion of core–shell metal–organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J Am Chem Soc 137:1572–1580CrossRefGoogle Scholar
  34. 34.
    Liu B, Shioyama H, Akita T, Xu Q (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130(16):5390–5391Google Scholar
  35. 35.
    Son S, Lim D, Nam D, Kim J, Shim SE, Baeck S-H (2019) J Solid State Chem 274: 237.
  36. 36.
    Pan Y, Liu Y, Zeng G, Zhao L, Lai Z (2011) Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem Commun 47:2071–2073. CrossRefGoogle Scholar
  37. 37.
    Chaikittisilp W, Hu M, Wang H, Huang HS, Fujita T, Wu KCW, Chen LC, Yamauchi Y, Ariga K (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 48:7259CrossRefGoogle Scholar
  38. 38.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRefGoogle Scholar
  39. 39.
    Wang H, Zhang D, Yan T, Wen X, Zhang J, Shi L, Zhong Q (2013) Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization. J Mater Chem A 1:11778CrossRefGoogle Scholar
  40. 40.
    Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095Google Scholar
  41. 41.
    Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotech 8(4):235–246Google Scholar
  42. 42.
    Wang Q, Yan J, Wang Y, Wei T, Zhang M, Jing X, Fan Z (2014) Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67:119–127CrossRefGoogle Scholar
  43. 43.
    Xu X, Sun Z, Chua DH, Pan L (2015) Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance. Sci Rep 5:11225Google Scholar
  44. 44.
    Ania CO, Khomenko V, Raymundo-Piñero E, Parra JB, Béguin F (2007) The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Adv Funct Mater 17(11):1828–1836Google Scholar
  45. 45.
    Chen L-F, Zhang X-D, Liang H-W, Kong M, Guan QF, Chen P, Wu ZY, Yu SH (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6:7092–7102CrossRefGoogle Scholar
  46. 46.
    Wang DW, Li F, Yin LC et al. (2012) Nitrogen‐Doped Carbon Monolith for Alkaline Supercapacitors and Understanding Nitrogen‐Induced Redox Transitions. Chem-Eur J 18(17):5345–5351Google Scholar
  47. 47.
    Tong Y-X, Li X-M, Xie L-J, Su FY, Li JP, Sun GH, Gao YD, Zhang N, Wei Q, Chen CM (2016) Nitrogen-doped hierarchical porous carbon derived from block copolymer for supercapacitor. Energy Storage Mater 3:140–148CrossRefGoogle Scholar
  48. 48.
    Wang C, He X, Shang Y, Peng Q, Qin Y, Shi E, Yang Y, Wu S, Xu W, du S, Cao A, Li Y (2014) Multifunctional graphene sheet–nanoribbon hybrid aerogels. J Mater Chem A 2:14994–15000CrossRefGoogle Scholar
  49. 49.
    Yadav P, Banerjee A, Unni S, Jog J, Kurungot S, Ogale S (2012) A 3D hexaporous carbon assembled from single-layer graphene as high performance supercapacitor. ChemSusChem 5:2159–2164CrossRefGoogle Scholar
  50. 50.
    Lin T-T, Lai W-H, Lü Q-F, Yu Y (2015) Porous nitrogen-doped graphene/carbon nanotubes composite with an enhanced supercapacitor performance. Electrochim Acta 178:517–524Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaojie Zhang
    • 1
    • 2
    • 3
    Email author
  • Xiaoyan Gao
    • 1
  • Zhanyu Wu
    • 4
  • Minghai Zhu
    • 4
  • Qinghai Jiang
    • 4
  • Shoubin Zhou
    • 4
  • Yi Huang
    • 4
  • Zhonghao Rao
    • 3
    Email author
  1. 1.National & Local Joint Engineering Research Center for Mineral Salt Deep UtilizationHuaiyin Institute of TechnologyHuaianChina
  2. 2.Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu ProvinceHuaiyin Institute of TechnologyHuaianChina
  3. 3.School of Electrical and Power EngineeringChina University of Mining and TechnologyXuzhouChina
  4. 4.Huafu (Jiangsu) Lithium Battery High Technology Co., Ltd.YangzhouChina

Personalised recommendations