pp 1–11 | Cite as

Ni and F co-modification to enhance the electrochemical properties of Li4Ti5O12 anode materials for lithium-ion batteries

  • Huanhuan Zhai
  • Yi Shuai
  • Yu Wang
  • Kanghua ChenEmail author
Original Paper


As a negative electrode material, the main drawbacks of Li4Ti5O12 (LTO) are its low electric conductivity and poor Li-ion diffusion coefficient. Fortunately, elements modification to address these problems is an effective method. Herein, we firstly report Ni and F co-modified LTO material which is synthesized via a solid-state reaction. Powder X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy were conducted to investigate the structure and morphology. Afterwards, we surprisingly find that Ni and F co-modification can reduce the overall charge transfer resistance of LTO for part of Ti4+ converts into Ti3+ and Ni2+ ions supply the charge carriers. When test in battery, a superior discharge capacity of 236.1 mAh g−1 at 0.036 A g−1 is obtained, much higher than that of pristine LTO (196.9 mAh g−1). Furthermore, it still retains a discharge capacity of 174.6 mAh g−1 after 200 cycles at 0.18 A g−1 and exhibits an excellent rate performance.


Li4Ti5O12 Ni and F co-modification Electronic conductivity Rate performance 


Funding information

The research was financially supported by the National Key Research and Development Program of China (No.2016YFB0300801), Major Research Equipment Development Projects of National Natural Science Foundation of China (No. 51327902).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Li Y, Li X, Geng D et al (2013) Carbon black cathodes for lithium oxygen batteries: Influence of porosity and heteroatom-doping [J]. Carbon 64(Complete):70–177Google Scholar
  2. 2.
    Bo H, Jiang L, Xue H et al (2014) Characterization of nano-lead-doped active carbon and its application in lead-acid battery[J]. J Power Sources 270(3):332–341Google Scholar
  3. 3.
    Li B, Han C, He YB, Yang C, du H, Yang QH, Kang F (2012) Facile synthesis of Li4Ti5O12/C composite with super rate performance[J]. Energy Environ Sci 5(11):9595CrossRefGoogle Scholar
  4. 4.
    Zhao L, Hu YS, Li H, Wang Z, Chen L (2011) Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries[J]. Adv Mater 23(11):1385–1388CrossRefGoogle Scholar
  5. 5.
    Aldon L, Kubiak P, Womes M, Jumas JC, Olivier-Fourcade J, Tirado JL, Corredor JI, Perez Vicente C (2005) Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel[J]. Cheminform 36(13):0–0CrossRefGoogle Scholar
  6. 6.
    Prakash A, Manikandan P, Ramesha K et al (2010) Solution-combustion synthesized nanocrystalline Li4Ti5O12 as high-rate performance Li-ion battery anode[J]. Cheminform 41(33):no–noCrossRefGoogle Scholar
  7. 7.
    Sorensen EM, Barry SJ, Jung HK, Rondinelli JM, Vaughey JT, Poeppelmeier KR (2006) Three-dimensionally ordered macroporous Li4Ti5O12: effect of wall structure on electrochemical properties. Chem Mater 18:482–489CrossRefGoogle Scholar
  8. 8.
    Jung HG, Myung ST, Chong SY et al (2011) Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries[J]. Energy Environ Sci 4(4):1345–1351CrossRefGoogle Scholar
  9. 9.
    Zaghib K, Simoneau M, Armand M et al (1999) Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J]. J Power Sources s 81–82(81–82):300–305CrossRefGoogle Scholar
  10. 10.
    Park KS, Benayad A, Kang DJ, Doo SG (2008) Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries[J]. J Am Chem Soc 130(45):14930–14931CrossRefGoogle Scholar
  11. 11.
    Ariyoshi K, Yamato R, Ohzuku T (2006) Zero-strain insertion mechanism of Li[LiTi]O for advanced lithium-ion (shuttlecock) batteries[J]. Electrochim Acta 51(6):1125–1129CrossRefGoogle Scholar
  12. 12.
    Xiang L, Huang Y, Li Y et al (2017) Al doping effects on LiCrTiO4 as an anode for lithium-ion batteries[J]. RSC Adv 7(8):4791–4797CrossRefGoogle Scholar
  13. 13.
    Liu Z, Zhang N, Wang Z et al (2012) Highly dispersed Ag nanoparticles (<10 nm) deposited on nanocrystalline Li4Ti5O12 demonstrating high-rate charge/discharge capability for lithium-ion battery[J]. J Power Sources 205(none):479–482CrossRefGoogle Scholar
  14. 14.
    Li X, Qu M, Huai Y et al (2010) Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery[J]. Electrochimi Acta 55(8):2978–2982CrossRefGoogle Scholar
  15. 15.
    Kubiak P, Garcia A, Womes M et al (2003) Phase transition in the spinel Li4Ti5O12 induced by lithium insertion : Influence of the substitutions Ti/V, Ti/Mn, Ti/Fe[J]. J Power Sources 119–121(none):626–630CrossRefGoogle Scholar
  16. 16.
    Prakash AS, Manikandan P, Ramesha K, Sathiya M, Tarascon JM, Shukla AK (2010) Solution-combustion synthesized nanocrystalline Li4Ti5O12 as high-rate performance Li-ion battery anode. Chem Mater 22:2857–2863CrossRefGoogle Scholar
  17. 17.
    Cheng L, Yan J, Zhu GN, Luo JY, Wang CX, Xia YY (2010) General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. J Mater Chem 20:595–602CrossRefGoogle Scholar
  18. 18.
    Li X, Qu M, Yu Z (2009) Structural and electrochemical performances of Li4Ti5-xZrxO12 as anode material for lithium-ion batteries. J Alloys Compd 487:L12–L17CrossRefGoogle Scholar
  19. 19.
    Yi TF, Shu J, Zhu YR, Zhu XD, Zhu RS, Zhou AN (2010) Advanced electrochemical performance of Li4Ti4.95V0.05O12 as a reversible anode material down to 0 V. J Power Sources 195:285–288CrossRefGoogle Scholar
  20. 20.
    Zhu GN, Wang YG, Xia YY (2012) Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 5:6652–6667CrossRefGoogle Scholar
  21. 21.
    Chou SL, Wang JZ, Liu HK, Dou SX (2011) Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery. J Phys Chem C 115:16220–16227CrossRefGoogle Scholar
  22. 22.
    Zhang Z, Li G, Peng H, Chen K (2013) Hierarchical hollow microspheres assembled from N-doped carbon coated Li4Ti5O12 nanosheets with enhanced lithium storage properties [J]. J Mater Chem A 1(48):15429–15434CrossRefGoogle Scholar
  23. 23.
    Junrong LI, Tang Z, Zhang Z (2005) Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12 [J]. Electrochem Commun 7(9):894–899CrossRefGoogle Scholar
  24. 24.
    Wang GJ, Gao J et al (2007) Preparation and characteristic of carbon-coated Li4Ti5O12 anode material [J]. J Power Sources 174(2):1109–1112CrossRefGoogle Scholar
  25. 25.
    Wang YQ, Lin G, Guo YG et al (2012) Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery [J]. J Am Chem Soc 134(18):7874–7879CrossRefGoogle Scholar
  26. 26.
    Zhu JP, Zu W, Zhao JJ et al (2012) Effects of Ag doping and coating on the performance of lithium ion battery material Li4Ti5O12.[J]. J Nanosci Nanotechnol 12(3):2539CrossRefGoogle Scholar
  27. 27.
    Zou HL, Liang X, Wang ZH, Cheng S, Xiang HF (2017) Preparation of Li4Ti5O12 microspheres with a pure Cr2O3 coating layer and its effect for lithium storage[J]. Chin J Chem Phys 30(1):103–111CrossRefGoogle Scholar
  28. 28.
    Wan Z, Rui C, Jiang S et al (2012) Nitrogen- and TiN-modified Li4Ti5O12: one-step synthesis and electrochemical performance optimization [J]. J Mater Chem 22(34):17773–17781CrossRefGoogle Scholar
  29. 29.
    Cai R, Jiang S, Yu X, Zhao B, Wang H, Shao Z (2012) A novel method to enhance rate performance of an Al-doped Li4Ti5O12 electrode by post-synthesis treatment in liquid formaldehyde at room temperature [J]. J Mater Chem 22(16):8013–8021CrossRefGoogle Scholar
  30. 30.
    Huang S, Wen Z, Lin B, Han J, Xu X (2008) The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithium ion batteries [J]. J Alloys Compd 457(1):400–403CrossRefGoogle Scholar
  31. 31.
    Li Q, Xue B, Tan Y, Wang K, Sun J (2018) A symmetrical and co-operating effect of Mg-Zr codoping on Li4Ti5O12 anode materials [J]. Solid State Ionics 326:63–68CrossRefGoogle Scholar
  32. 32.
    Ma Y, Ding B, Ji G et al (2013) Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li ion batteries.[J]. ACS Nano 7(12):10870CrossRefGoogle Scholar
  33. 33.
    Du G, Sharma N, Peterson VK et al (2011) Br-doped Li4Ti5O12 and composite TiO2 anodes for Li-ion batteries: synchrotron X-ray and in situ neutron diffraction studies[J]. Adv Funct Mater 21(20):3990–3997CrossRefGoogle Scholar
  34. 34.
    Song H, Yun SW, Chun HH, Kim MG, Chung KY, Kim HS, Cho BW, Kim YT (2012) Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negative-electrode materials for high-rate Li-ion batteries[J]. Energy Environ Sci 5(12):9903–9913CrossRefGoogle Scholar
  35. 35.
    Gao J, Ying J, Jiang C, Wan C (2009) Preparation and characterization of spherical La-doped Li4Ti5O12 anode material for lithium ion batteries[J]. Ionics 15(5):597–601CrossRefGoogle Scholar
  36. 36.
    Zhang C, Shao D, Gao Q et al (2015) Electrochemical lithium storage of Li4Ti5O12 /NiO nanocomposites for high-performance lithium-ion battery anodes[J]. J Solid State Electrochem 19(6):1859–1866CrossRefGoogle Scholar
  37. 37.
    Wu MS, Lin YP (2011) Monodispersed macroporous architecture of nickel-oxide film as an anode material for thin-film lithium-ion batteries[J]. Electrochim Acta 56(5):2068–2073CrossRefGoogle Scholar
  38. 38.
    Hosono E, Fujihara S, Honma I, Zhou H (2006) The high power and high energy densities Li ion storage device by nanocrystalline and mesoporous Ni/NiO covered structure[J]. Electrochem Commun 8(2):284–288CrossRefGoogle Scholar
  39. 39.
    Shembel EM, Apostolova RD, Nagirnyi VM (2004) Electrolytic nickel oxides in the electrodes of lithium secondary batteries[J]. Russ J Electrochem 40(1):36–43CrossRefGoogle Scholar
  40. 40.
    Lee KT, Cho J (2013) Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries[J]. Nano Today 6(1):28–41CrossRefGoogle Scholar
  41. 41.
    Wang XH, Li XW, Sun XL, Li F, Liu Q, Wang Q, He D (2011) Nanostructured NiO electrode for high rate Li-ion batteries[J]. J Mater Chem 21(11):3571–3573CrossRefGoogle Scholar
  42. 42.
    Yuan C, Chen Q, Zhang P et al (2018) Fluoride doping Li4Ti5O12 nanosheets as anode materials for enhanced rate performance of lithium-ion batteries[J]. J Electroanal Chem 815:123–129CrossRefGoogle Scholar
  43. 43.
    Zhen Z, Xu Y, Ji M et al (2013) Synthesis and electrochemical performance of F-doped Li4Ti5O12 for lithium-ion batteries[J]. Electrochim Acta 109(43):645–650Google Scholar
  44. 44.
    Wei A, Li W, Zhang L et al Effect of Zn2+ and F co-modification on the structure and electrochemical performance of Li4Ti5O12 anode material [J]. Nano 12(05):1750054Google Scholar
  45. 45.
    Xue B, Li W et al (2016) Preparation and electrochemical properties of Mg2+ and F co-doped Li4Ti5O12 anode material for use in the lithium-ion batteries [J]. Electrochim Acta 222:1045–1055CrossRefGoogle Scholar
  46. 46.
    Huang S, Wen Z, Zhonghua G, Zhu X (2005) Preparation and cycling performance of Al3+ and F co-substituted compounds Li4AlxTi5-xFyO12-y [J]. Electrochim Acta 50:4057–4062CrossRefGoogle Scholar
  47. 47.
    Scharner S, Weppner W, Schmid-Beurmann P (1999) Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel. J Electrochem Soc 146:857–861CrossRefGoogle Scholar
  48. 48.
    Liu D , Ouyang C , Shu J , et al. Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12 [J]. Phys Status Solidi (b), 2006, 243(8):7Google Scholar
  49. 49.
    Laumann A, Boysen H, Bremholm M et al (2011) Lithium migration at high temperatures in Li4Ti5O12 studied by neutron diffraction[J]. Cheminform 42(35):2753–2759CrossRefGoogle Scholar
  50. 50.
    Tian Q, Chen P, Zhang Z, Yang L (2017) Achievement of significantly improved lithium storage for novel clew-like Li4Ti5O12 anode assembled by ultrafine nanowires[J]. J Power Sources 350:49–55CrossRefGoogle Scholar
  51. 51.
    Zhang et al (2013) Li4Ti5O12 prepared by a modified citric acid solegel method for lithium-ion battery [J]. J Power Sources 236:118–125CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Huanhuan Zhai
    • 1
    • 2
  • Yi Shuai
    • 1
    • 2
  • Yu Wang
    • 3
  • Kanghua Chen
    • 1
    • 2
    • 3
    Email author
  1. 1.Science and Technology on High Strength Structural Materials LaboratoryCentral South UniversityChangshaChina
  2. 2.Light Alloy Metal Research InstituteCentral South UniversityChangshaChina
  3. 3.Powder Metallurgy Research InstituteCentral South UniversityChangshaChina

Personalised recommendations