Advertisement

Ionics

pp 1–11 | Cite as

MOF-derived bimetal oxides NiO/NiCo2O4 with different morphologies as anodes for high-performance lithium-ion battery

  • Jinxi ChenEmail author
  • Jifei Jiang
  • Shixin Liu
  • Jiaojiao Ren
  • Yongbing Lou
Original Paper

Abstract

Bimetal oxides NiO/NiCo2O4 were successfully fabricated by using metal-organic frameworks (MOFs) as the precursor. The prepared NiO/NiCo2O4 showed hollow sphere and rod-like structures, respectively. When evaluated as an anode material for lithium-ion battery, a sphere-like NiO/NiCo2O4 showed an initial discharge capacity of 1778 mAh/g and reversible capacity of 920 mAh/g at 100 mA/g after 100 cycles. And a rod-like NiO/NiCo2O4 displayed initial discharge capacity of 1800 mAh/g and stabilized at an average capacity of 1198 mAh/g after 100 cycles. The results showed that the materials with the rod-like structure were much more stable and had better rate capability and more superior cyclic stability. The rod-like structure had a shorter transmission distance of Li+, which could maintain its stable rod-like structure in the long-term cycle. This strategy could shed light on designing stable electrode materials for conversion devices and energy storages.

Keywords

Lithium-ion battery Anodes Metal-organic frameworks Bimetallic oxide Hollow sphere NiO/NiCo2O4 Rod-shaped NiO/NiCo2O4 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (21475021 and 21427807) and the Fundamental Research Funds for the Central Universities (2242017K41023).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11581_2019_3152_MOESM1_ESM.doc (4.1 mb)
ESM 1 (DOC 4205 kb)

References

  1. 1.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657.  https://doi.org/10.1038/451652a Google Scholar
  2. 2.
    Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21(27):9938.  https://doi.org/10.1039/c0jm04225k Google Scholar
  3. 3.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367.  https://doi.org/10.1038/35104644 Google Scholar
  4. 4.
    Ma Y, Ma Y, Bresser D, Ji Y, Geiger D, Kaiser U, Streb C, Varzi A, Passerini S (2018) Cobalt disulfide nanoparticles embedded in porous carbonaceous micro-polyhedrons interlinked by carbon nanotubes for superior lithium and sodium storage. ACS Nano 12(7):7220–7231.  https://doi.org/10.1021/acsnano.8b03188 Google Scholar
  5. 5.
    Liu Q, Zhu J, Zhang L, Qiu Y (2018) Recent advances in energy materials by electrospinning. Renew Sust Energ Rev 81:1825–1858.  https://doi.org/10.1016/j.rser.2017.05.281 Google Scholar
  6. 6.
    Wu HB, Chen JS, Hng HH, Lou XW (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4(8):2526–2542.  https://doi.org/10.1039/c2nr11966h Google Scholar
  7. 7.
    Zhao Y, Li X, Yan B, Xiong D, Li D, Lawes S, Sun X (2016) Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater 6(8):1502175.  https://doi.org/10.1002/aenm.201502175 Google Scholar
  8. 8.
    Miszta K, de Graaf J, Bertoni G, Dorfs D, Brescia R, Marras S, Ceseracciu L, Cingolani R, van Roij R, Dijkstra M, Manna L (2011) Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nat Mater 10(11):872–876.  https://doi.org/10.1038/nmat3121 Google Scholar
  9. 9.
    Jin B, Zhou X, Huang L, Licklederer M, Yang M, Schmuki P (2016) Aligned MoOx/MoS2 core–shell nanotubular structures with a high density of reactive sites based on self-ordered anodic molybdenum oxide nanotubes. Angew Chem Int Ed 55(40):12252–12256.  https://doi.org/10.1002/anie.201605551 Google Scholar
  10. 10.
    Zhou W, Tay YY, Jia X, Yau Wai DY, Jiang J, Hoon HH, Yu T (2012) Controlled growth of SnO2@Fe2O3 double-sided nanocombs as anodes for lithium-ion batteries. Nanoscale 4(15):4459–4463.  https://doi.org/10.1039/C2NR31239E Google Scholar
  11. 11.
    Cao W, Hu A, Chen X, Liu X, Liu P, Tang Q, Zhao XS (2016) NiO hollow microspheres interconnected by carbon nanotubes as an anode for lithium ion batteries. Electrochim Acta 213:75–82.  https://doi.org/10.1016/j.electacta.2016.07.094 Google Scholar
  12. 12.
    Qi X, Zheng W, Li X, He G (2016) Multishelled NiO hollow microspheres for high-performance supercapacitors with ultrahigh energy density and robust cycle life. Sci Rep 6:33241.  https://doi.org/10.1038/srep33241 Google Scholar
  13. 13.
    Liu L, Zhang H, Yang J, Mu Y, Wang Y (2015) Self-assembled novel dandelion-like NiCo2O4 microspheres@nanomeshes with superior electrochemical performance for supercapacitors and lithium-ion batteries. J Mater Chem A 3(44):22393–22403.  https://doi.org/10.1039/c5ta07110k Google Scholar
  14. 14.
    Gao G, Wu HB, Dong B, Ding S, Lou XW (2015) Growth of ultrathin ZnCo2O4 nanosheets on reduced graphene oxide with enhanced lithium storage properties. Adv Sci 2(1–2):1400014.  https://doi.org/10.1002/advs.201400014 Google Scholar
  15. 15.
    Xu X, Cao K, Wang Y, Jiao L (2016) 3D hierarchical porous ZnO/ZnCo2O4 nanosheets as high-rate anode material for lithium-ion batteries. J Mater Chem A 4(16):6042–6047.  https://doi.org/10.1039/c6ta00723f Google Scholar
  16. 16.
    Zhang C, Xiao J, Lv X, Qian L, Yuan S, Wang S, Lei P (2016) Hierarchically porous Co3O4/C nanowire arrays derived from a metal–organic framework for high performance supercapacitors and the oxygen evolution reaction. J Mater Chem A 4(42):16516–16523.  https://doi.org/10.1039/c6ta06314d Google Scholar
  17. 17.
    Gholipour-Ranjbar H, Soleimani M, Naderi HR (2016) Application of Ni/Co-based metal–organic frameworks (MOFs) as an advanced electrode material for supercapacitors. New J Chem 40(11):9187–9193.  https://doi.org/10.1039/c6nj01449f Google Scholar
  18. 18.
    Li H, Liang M, Sun W, Wang Y (2016) Bimetal-organic framework: one-step homogenous formation and its derived mesoporous ternary metal oxide nanorod for high-capacity, high-rate, and long-cycle-life lithium storage. Adv Funct Mater 26(7):1098–1103.  https://doi.org/10.1002/adfm.201504312 Google Scholar
  19. 19.
    He D, Liu G, Pang A, Jiang Y, Suo H, Zhao C (2017) A high-performance supercapacitor electrode based on tremella-like NiC2O4@NiO core/shell hierarchical nanostructures on nickel foam. Dalton Trans 46(6):1857–1863.  https://doi.org/10.1039/c6dt04500f Google Scholar
  20. 20.
    Wu Y, Meng J, Li Q, Niu C, Wang X, Yang W, Li W, Mai L (2017) Interface-modulated fabrication of hierarchical yolk–shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage. Nano Res 10(7):2364–2376.  https://doi.org/10.1007/s12274-017-1433-6 Google Scholar
  21. 21.
    Chaikittisilp W, Hu M, Wang H, Huang H-S, Fujita T, Wu KCW, Chen L-C, Yamauchi Y, Ariga K (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 48(58):7259–7261.  https://doi.org/10.1039/C2CC33433J Google Scholar
  22. 22.
    Chaikittisilp W, Ariga K, Yamauchi Y (2013) A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J Mater Chem A 1(1):14–19.  https://doi.org/10.1039/C2TA00278G Google Scholar
  23. 23.
    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444.  https://doi.org/10.1126/science.1230444 Google Scholar
  24. 24.
    Tang J, Liu J, Li C, Li Y, Tade MO, Dai S, Yamauchi Y (2015) Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angew Chem 127(2):598–603.  https://doi.org/10.1002/ange.201407629 Google Scholar
  25. 25.
    Kaneti YV, Zhang J, He Y-B, Wang Z, Tanaka S, Hossain MSA, Pan Z-Z, Xiang B, Yang Q-H, Yamauchi Y (2017) Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries. J Mater Chem A 5(29):15356–15366.  https://doi.org/10.1039/C7TA03939E Google Scholar
  26. 26.
    Castarlenas S, Téllez C, Coronas J (2017) Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. J Membr Sci 526:205–211.  https://doi.org/10.1016/j.memsci.2016.12.041 Google Scholar
  27. 27.
    Kang Z, Fan L, Sun D (2017) Recent advances and challenges of metal–organic framework membranes for gas separation. J Mater Chem A 5(21):10073–10091.  https://doi.org/10.1039/c7ta01142c Google Scholar
  28. 28.
    Bhadra BN, Song JY, Khan NA, Jhung SH (2017) TiO2-containing carbon derived from a metal-organic framework composite: a highly active catalyst for oxidative desulfurization. ACS Appl Mater Interfaces 9(36):31192–31202.  https://doi.org/10.1021/acsami.7b10336 Google Scholar
  29. 29.
    Bag PP, Wang D, Chen Z, Cao R (2016) Outstanding drug loading capacity by water stable microporous MOF: a potential drug carrier. Chem Commun 52(18):3669–3672.  https://doi.org/10.1039/c5cc09925k Google Scholar
  30. 30.
    Niu JL, Zeng CH, Peng HJ, Lin XM, Sathishkumar P, Cai YP (2017) Formation of N-doped carbon-coated ZnO/ZnCo2O4/CuCo2O4 derived from a polymetallic metal-organic framework: toward high-rate and long-cycle-life lithium storage. Small 13(47).  https://doi.org/10.1002/smll.201702150
  31. 31.
    He Z, Wang K, Zhu S, Huang LA, Chen M, Guo J, Pei S, Shao H, Wang J (2018) MOF-Derived hierarchical MnO-doped Fe3O4@C composite nanospheres with enhanced lithium storage. ACS Appl Mater Interfaces 10(13):10974–10985.  https://doi.org/10.1021/acsami.8b01358 Google Scholar
  32. 32.
    He S, Li Z, Wang J, Wen P, Gao J, Ma L, Yang Z, Yang S (2016) MOF-derived NixCo1−x(OH)2 composite microspheres for high-performance supercapacitors. RSC Adv 6(55):49478–49486.  https://doi.org/10.1039/c6ra03992h Google Scholar
  33. 33.
    Hu Z, Peng Y, Kang Z, Qian Y, Zhao D (2015) A modulated hydrothermal (MHT) approach for the facile synthesis of UiO-66-type MOFs. Inorg Chem 54(10):4862–4868.  https://doi.org/10.1021/acs.inorgchem.5b00435 Google Scholar
  34. 34.
    Wen P, Gong P, Sun J, Wang J, Yang S (2015) Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J Mater Chem A 3(26):13874–13883.  https://doi.org/10.1039/c5ta02461g Google Scholar
  35. 35.
    Yang J, Zheng C, Xiong P, Li Y, Wei M (2014) Zn-doped Ni-MOF material with a high supercapacitive performance. J Mater Chem A 2(44):19005–19010.  https://doi.org/10.1039/c4ta04346d Google Scholar
  36. 36.
    Yang J, Xiong P, Zheng C, Qiu H, Wei M (2014) Metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode. J Mater Chem A 2(39):16640–16644.  https://doi.org/10.1039/c4ta04140b Google Scholar
  37. 37.
    Zhu D, Zheng F, Xu S, Zhang Y, Chen Q (2015) MOF-derived self-assembled ZnO/Co3O4 nanocomposite clusters as high-performance anodes for lithium-ion batteries. Dalton Trans 44(38):16946–16952.  https://doi.org/10.1039/c5dt02271a Google Scholar
  38. 38.
    Peng H-J, Hao G-X, Chu Z-H, Lin Y-W, Lin X-M, Cai Y-P (2017) Porous carbon with large surface area derived from a metal–organic framework as a lithium-ion battery anode material. RSC Adv 7(54):34104–34109.  https://doi.org/10.1039/c7ra05090a Google Scholar
  39. 39.
    Huang G, Zhang L, Zhang F, Wang L (2014) Metal–organic framework derived Fe2O3@NiCo2O4 porous nanocages as anode materials for Li-ion batteries. Nanoscale 6(10):5509–5515.  https://doi.org/10.1039/C3NR06041A Google Scholar
  40. 40.
    Hu L, Yan N, Chen Q, Zhang P, Zhong H, Zheng X, Li Y, Hu X (2012) Fabrication based on the Kirkendall effect of Co3O4 porous nanocages with extraordinarily high capacity for lithium storage. Chem-Eur J 18(29):8971–8977.  https://doi.org/10.1002/chem.201200770 Google Scholar
  41. 41.
    Marco JF, Gancedo JR, Gracia M, Gautier JL, Ríos EI, Palmer HM, Greaves C, Berry FJ (2001) Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4. J Mater Chem 11(12):3087–3093.  https://doi.org/10.1039/B103135J Google Scholar
  42. 42.
    Han Y, Li J, Zhang T, Qi P, Li S, Gao X, Zhou J, Feng X, Wang B (2018) Zinc/nickel-doped hollow core–shell Co3O4 derived from a metal–organic framework with high capacity, stability, and rate performance in lithium/sodium-ion batteries. Chem-Eur J 24(7):1651–1656.  https://doi.org/10.1002/chem.201704416 Google Scholar
  43. 43.
    Li J, Xiong S, Liu Y, Ju Z, Qian Y (2013) High Electrochemical Performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl Mater Interfaces 5(3):981–988.  https://doi.org/10.1021/am3026294 Google Scholar
  44. 44.
    Marco JF, Gancedo JR, Gracia M, Gautier JL, Ríos E, Berry FJ (2000) Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study. J Solid State Chem 153(1):74–81.  https://doi.org/10.1006/jssc.2000.8749 Google Scholar
  45. 45.
    Zhong J-H, Wang A-L, Li G-R, Wang J-W, Ou Y-N, Tong Y-X (2012) Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J Mater Chem 22(12):5656–5665.  https://doi.org/10.1039/C2JM15863A Google Scholar
  46. 46.
    Xu J, Tang H, Xu T, Wu D, Shi Z, Tian Y, Li X (2017) Porous NiO hollow quasi-nanospheres derived from a new metal-organic framework template as high-performance anode materials for lithium ion batteries. Ionics 23(12):3273–3280.  https://doi.org/10.1007/s11581-017-2160-4 Google Scholar
  47. 47.
    Sun C, Yang J, Rui X, Zhang W, Yan Q, Chen P, Huo F, Huang W, Dong X (2015) MOF-directed templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithium-ion battery anodes. J Mater Chem A 3(16):8483–8488.  https://doi.org/10.1039/c5ta00455a Google Scholar
  48. 48.
    Hu X, Li C, Lou X, Yang Q, Hu B (2017) Hierarchical CuO octahedra inherited from copper metal–organic frameworks: high-rate and high-capacity lithium-ion storage materials stimulated by pseudocapacitance. J Mater Chem A 5(25):12828–12837.  https://doi.org/10.1039/c7ta02953e Google Scholar
  49. 49.
    Fan Z, Wang B, Xi Y, Xu X, Li M, Li J, Coxon P, Cheng S, Gao G, Xiao C, Yang G, Xi K, Ding S, Kumar RV (2016) A NiCo2O4 nanosheet-mesoporous carbon composite electrode for enhanced reversible lithium storage. Carbon 99:633–641.  https://doi.org/10.1016/j.carbon.2015.12.035 Google Scholar
  50. 50.
    Ren Q-Q, Wang Z-B, Ke K, Zhang S-W, Yin B-S (2017) NiCo2O4 nanosheets and nanocones as additive-free anodes for high-performance Li-ion batteries. Ceram Int 43(16):13710–13716.  https://doi.org/10.1016/j.ceramint.2017.07.083 Google Scholar
  51. 51.
    Li T, Li X, Wang Z, Guo H, Li Y (2015) A novel NiCo2O4 anode morphology for lithium-ion batteries. J Mater Chem A 3(22):11970–11975.  https://doi.org/10.1039/c5ta01928a Google Scholar
  52. 52.
    Yang F, Li W, Tang B (2018) Two-step method to synthesize spinel Co3O4-MnCo2O4 with excellent performance for lithium ion batteries. Chem Eng J 334:2021–2029.  https://doi.org/10.1016/j.cej.2017.11.157 Google Scholar
  53. 53.
    Sun Y, Huang F, Li S, Shen Y, Xie A (2017) Novel porous starfish-like Co3O4@nitrogen-doped carbon as an advanced anode for lithium-ion batteries. Nano Res 10(10):3457–3467.  https://doi.org/10.1007/s12274-017-1557-8 Google Scholar
  54. 54.
    Han Y, Zhao M, Dong L, Feng J, Wang Y, Li D, Li X (2015) MOF-derived porous hollow Co3O4 parallelepipeds for building high-performance Li-ion batteries. J Mater Chem A 3(45):22542–22546.  https://doi.org/10.1039/c5ta06205e Google Scholar
  55. 55.
    Chen Y, Wu J, Yang W, Fu Y, Zhou R, Chen S, Zhang L, Song Y, Wang L (2016) Zn/Fe-MOFs-derived hierarchical ball-in-ball ZnO/ZnFe2O4@carbon nanospheres with exceptional lithium storage performance. J Alloys Compd 688:211–218.  https://doi.org/10.1016/j.jallcom.2016.07.011 Google Scholar
  56. 56.
    Li Y, Wu X (2017) Fabrication of urchin-like NiCo2O4 microspheres assembled by using SDS as soft template for anode materials of Lithium-ion batteries. Ionics 24(5):1329–1337.  https://doi.org/10.1007/s11581-017-2291-7 Google Scholar
  57. 57.
    Mondal AK, Su D, Chen S, Kretschmer K, Xie X, Ahn HJ, Wang G (2015) A microwave synthesis of mesoporous NiCo2O4 nanosheets as electrode materials for lithium-ion batteries and supercapacitors. Chemphyschem 16(1):169–175.  https://doi.org/10.1002/cphc.201402654 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jinxi Chen
    • 1
    Email author
  • Jifei Jiang
    • 1
  • Shixin Liu
    • 1
  • Jiaojiao Ren
    • 1
  • Yongbing Lou
    • 1
  1. 1.School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and DeviceSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations