pp 1–11 | Cite as

Fabrication of mixed matrix anion exchange membrane decorated with polyaniline nanoparticles to chloride and sulfate ions removal from water

  • S. M. HosseiniEmail author
  • M. M. Behvand Usefi
  • M. Habibi
  • F. Parvizian
  • B. Van der Bruggen
  • A. Ahmadi
  • M. Nemati
Original Paper


A heterogeneous anion exchange membrane was modified by introducing polyaniline nanoparticles, in order to enhance its electrochemical properties in view of chloride and sulfate ion removal from water. Polyaniline nanoparticles were synthesized by facile chemical polymerization technique. Nanoparticles were characterized by FTIR, FESEM, and XRD. In addition, SOM images showed a uniform surface for membranes. Utilizing PANI nanoparticles in membrane body led to increase of water content, ion exchange capacity, surface hydrophilicity, and electrical conductivity. Membrane transport number and permselectivity were improved in NaCl solution by incorporating PANI nanoparticles; in Na2SO4 solution, they showed an opposite trend. The chloride and sulfate flux were enhanced by a low PANI concentration and declined at higher concentration. Modified PANI membranes showed a lower selectivity and flux for bivalent ions compared to monovalent ions. Membrane mechanical resistance was increased by using PANI in concentrations up to 2 wt% and decreased at higher PANI ratios.


Anion exchange membrane Polyaniline nanoparticles Electrochemical characterization Chloride/sulfate removal Mechanical strength 


Funding information

This research was financially supported by Arak University.


  1. 1.
    Sivaraman P, Chavan JG, Thakur AP, Hande VR, Samui AB (2007) Electrochemical modification of cation exchange membrane with polyaniline for improvement in permselectivity. J Electrochimica Acta 52:5046–5052CrossRefGoogle Scholar
  2. 2.
    Nagarale RK, Gohil GS, Shahi VK, Trivedi GS, Rangarajan R (2004) Preparation and electrochemical characterization of cation- and anion-exchange /polyaniline composite membranes. J Colloid Interface Sci 277:162–171CrossRefGoogle Scholar
  3. 3.
    Amado FDR, Rodrigues LF, Rodrigues MAS, Bernardes AM, Ferreira JZ, Ferreira CA (2005) Development of polyurethane/polyaniline membranes for zinc recovery through electrodialysis. Desalination 186:199–206CrossRefGoogle Scholar
  4. 4.
    Farrokhzad H, Darvishmanesh S, Genduso G, Van Gerven T, Van der Bruggen B (2015) Development of bivalent cation selective ion exchange membranes by varying molecular weight of polyaniline. J Electrochimica Acta 158:64–72CrossRefGoogle Scholar
  5. 5.
    Takagi R, Vaselbehagh M, Matsuyama H (2014) Theoretical study of the permselectivity of an anion exchange membrane in electrodialysis. J Membr Sci 470:486–493CrossRefGoogle Scholar
  6. 6.
    Farrokhzad H, Moghbeli MR, Van Gerven T, Van der Bruggen B (2015) Surface modification of composite ion exchange membranes by polyaniline. React Funct Polymers 86:161–167CrossRefGoogle Scholar
  7. 7.
    Hosseini SM, Sohrabnejad S, Nabiyouni G, Jashni E, Van der Bruggen B, Ahmadi A (2019) Magnetic cation exchange membrane incorporated with cobalt ferrite nanoparticles for chromium ions removal via electrodialysis. J Membr Sci 583:292–300CrossRefGoogle Scholar
  8. 8.
    Hosseini SM, Jashni E, Jafari MR, Van der Bruggen B, Shahedi Z (2018) Nanocomposite polyvinyl chloride-based heterogeneous cation exchange membrane prepared by synthesized ZnQ2 nanoparticles: ionic behaviour and morphological characterization. J Membr Sci 560:1–10CrossRefGoogle Scholar
  9. 9.
    Hosseini SM, Ahmadi A, Van der Bruggen B, Jafari MR, Shahedi Z, Nemati M (2019) New approach to adapting electrochemical properties of cation-exchange membrane by incorporating tris (8-hydroxyquinolinato) aluminum nanoparticles. IONICS 25:1147–1156CrossRefGoogle Scholar
  10. 10.
    Chowdhury P, Mondal P, Roy K (2011) Synthesis of polyaniline nanoparticle grafted silica gel and study of its Cr(VI) binding property. J Appl Polym Sci 119:823–829CrossRefGoogle Scholar
  11. 11.
    Hosseini SM, Jashni E, Habibi M, Van der Bruggen B (2018) Fabrication of novel electrodialysis heterogeneous ion exchange membranes by incorporating PANI/GO functionalized composite nanoplates. IONICS 24:1789–1801CrossRefGoogle Scholar
  12. 12.
    Teli SB, Molina S, Calvo EG, Lozano AE, de Abajo J (2011) Preparation, characterization and antifouling property of polyethersulfone-PANI/PMA ultrafiltration membranes. J Desal 299:113–122CrossRefGoogle Scholar
  13. 13.
    Karthik R, Meenakshi S (2015) Removal of Pb (II) and cd (II) ions from aqueous solution using polyaniline grafted chitosan. Chem Eng J 263:168–177CrossRefGoogle Scholar
  14. 14.
    Ayad M, Zaghlol S (2013) Facile synthesis of polyaniline nanoparticles; its adsorption behavior. Chem Eng J 217:460–465CrossRefGoogle Scholar
  15. 15.
    Lu X, Mao H, Chao D, Zhang W, Wei Y (2006) Ultrasonic synthesis of polyaniline nanotubes containing Fe3O4 nanoparticles. J Solid State Chem 179:2609–2615CrossRefGoogle Scholar
  16. 16.
    Liao Y, Li XG, Hoek EMV, Kaner RB (2013) Carbon nanotube/polyaniline nano fiber ultrafiltration membranes. J Mater Chem A 1:15390–15396CrossRefGoogle Scholar
  17. 17.
    Razali NF, Mohammad AW, Hilal N (2014) Effects of polyaniline nanoparticles in polyethersulfone ultrafiltration membranes: fouling behaviors by different types of foulant. J Ind Eng Chem 20:3134–3140CrossRefGoogle Scholar
  18. 18.
    Moochani M, Moghadassi AR, Hosseini SM, Bagheripour E, Parvizian F (2016) Fabrication of novel polyethersulfone based nanofiltration membrane by embedding polyaniline-co-graphene oxide nanoplates. Korean J Chem Eng 33:2674–2683CrossRefGoogle Scholar
  19. 19.
    Kikhavani T, Ashrafizadeh SN, Van der Bruggen B (2014) Nitrate selectivity and transport properties of a novel anion exchange membrane in Electrodialysis. J Electrochimica Acta 144:341–351CrossRefGoogle Scholar
  20. 20.
    Tanaka Y (2007) Ion exchange membranes: fundamentals and applications, series 12; membrane science and technology. Elsevier, AmsterdamGoogle Scholar
  21. 21.
    Hosseini SM, Gholami A, Madaeni SS, Moghadassi AR, Hamidi AR (2012) Fabrication of (polyvinyl chloride/cellulose acetate) electrodialysis heterogeneous cation exchange membrane: characterization and performance in desalination process. J Desal 306:51–59CrossRefGoogle Scholar
  22. 22.
    Sata T (2004) Ion exchange membranes: preparation, characterization, modification and application, the Royal Society of Chemistry, Cambridge, U.KGoogle Scholar
  23. 23.
    Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  24. 24.
    Nemati M, Hosseini SM, Shabanian M (2017) Novel electrodialysis cation exchange membrane prepared by 2-acrylamido-2-methylpropane sulfonic acid; heavy metal ions removal. J Hazard Mater 337:90–104CrossRefGoogle Scholar
  25. 25.
    Hosseini SM, Jeddi F, Nemati M, Madaeni SS, Moghadassi AR (2014) Electrodialysis heterogeneous anion exchange membrane modified by PANI/MWCNTs composite nanoparticles: preparation, characterization and ionic transport property in desalination. Desalination 341:107–114CrossRefGoogle Scholar
  26. 26.
    Hosseini SM, Jashni E, Habibi M, Nemati M, Van der Bruggen B (2017) Evaluating the ion transport characteristics of novel graphene oxide nanoplates entrapped mixed matrix cation exchange membranes in water deionization. J Membr Sci 541:641–652CrossRefGoogle Scholar
  27. 27.
    Li F, Qin X (2010) Synthesis of polyaniline nanoparticles. J Mater Res 96:237–240Google Scholar
  28. 28.
    Elanthamilan E, Sathiyan A, Rajkumar S, Joan Sheryl E, Merli JP (2018) Polyaniline based charcoal/Ni nanocomposite material for high performance super capacitor. J Sustain Energ Fules 2:811–819CrossRefGoogle Scholar
  29. 29.
    Sahin M, Görçay H, Kır E, Sahin Y (2009) Removal of calcium and magnesium using polyaniline and derivatives modified PVDF cation-exchange membranes by Donnan dialysis. React Funct Polymers 69:673–680CrossRefGoogle Scholar
  30. 30.
    Gahlot S, Sharma PP, Jha PK, Kulshrestha V (2017) Effective desalination of brackish water by Electrodialysis using SPANI composite cation exchange membranes. J Chem Select 2:8886–8892Google Scholar
  31. 31.
    Elumalai V, Sangeetha D (2018) Anion exchange composite membrane based on octa quaternary ammonium polyhedral oligomeric Silsesquioxane for alkaline fuel cells. J Power Sources 375:412–420CrossRefGoogle Scholar
  32. 32.
    Hosseini SM, Nemati M, Jeddi F, Salehi E, Khodabakhshi AR, Madaeni SS (2015) Fabrication of mixed matrix heterogeneous cation exchange membrane modified by titanium dioxide nanoparticles: mono/bivalent ionic transport property in desalination. Desalination 359:167–175CrossRefGoogle Scholar
  33. 33.
    Hosseini SM, Madaeni SS, Khodabakhshi AR (2011) Preparation and characterization of heterogeneous cation exchange membranes based on polycarbonate and S-poly vinyl chloride. Sep Sci Technol 46:794–808CrossRefGoogle Scholar
  34. 34.
    Nemati M, Hosseini SM (2016) Fabrication and electrochemical property modification of mixed matrix heterogeneous cation exchange membranes filled with Fe3O4/PAA core-shell nanoparticles. IONICS 22:899–909CrossRefGoogle Scholar
  35. 35.
    Hosseini SM, Hamidi AR, Moghadassi AR, Koranian P, Madaeni SS (2015) Fabrication of novel mixed matrix electrodialysis heterogeneous ion exchange membranes modified by ilmenite (FeTiO3): electrochemical and ionic transport characteristics. IONICS 21(2):437–447CrossRefGoogle Scholar
  36. 36.
    Zendehnam A, Robatmili N, Hosseini SM, Arabzadegan M, Madaeni SS (2013) Fabrication of novel (acrylonitrile butadiene styrene/activated carbon/silver nanoparticles) heterogeneous anion exchange membrane: physico-chemical and antibacterial characteristics. J Taiwan Inst Chem Eng 44:670–677CrossRefGoogle Scholar
  37. 37.
    Khodabakhshi AR, Madaeni SS, Hosseini SM (2011) Preparation and characterization of monovalent ion selective SPVC/ SBR heterogeneous anion exchange membranes. Polym Int 60:466–474CrossRefGoogle Scholar
  38. 38.
    Nagarale RK, Gohil GS, Shahi VK (2006) Recent developments on ion-exchange membranes and electro-membrane processes. Adv Colloid Interf Sci 119:97–130CrossRefGoogle Scholar
  39. 39.
    Xu T (2005) Ion exchange membranes: state of their development and perspective. J Membr Sci 263:1–29CrossRefGoogle Scholar
  40. 40.
    Dlugolecki P, Nymeijer K, Metz S, Wessling M (2008) Current status of ion exchange membranes for power generation from salinity gradients. J Membr Sci 319:214–222CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. M. Hosseini
    • 1
    Email author
  • M. M. Behvand Usefi
    • 1
  • M. Habibi
    • 2
  • F. Parvizian
    • 1
  • B. Van der Bruggen
    • 3
    • 4
  • A. Ahmadi
    • 1
  • M. Nemati
    • 1
  1. 1.Department of Chemical Engineering, Faculty of EngineeringArak UniversityArakIran
  2. 2.Department of Chemistry, Faculty of SciencesArak UniversityArakIran
  3. 3.Process Engineering for Sustainable Systems Section, Department of Chemical EngineeringUniversity of LeuvenLeuvenBelgium
  4. 4.Faculty of Engineering and the Built EnvironmentTshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations