pp 1–17 | Cite as

Lithium ion conducting membrane based on K-carrageenan complexed with lithium bromide and its electrochemical applications

  • I. Arockia Mary
  • S. Selvanayagam
  • S. SelvasekarapandianEmail author
  • S. R. Srikumar
  • T. Ponraj
  • V. Moniha
Original Papers


Lithium conducting materials play a major role in developing electrochemical devices. Green materials have gained much attention in order to face an energy crisis and global warming. Many researchers took effort to develop biopolymer electrolyte-based electrochemical devices instead of the synthetic polymer due to its high cost and not being environmentally green. K-carrageenan membranes with different concentrations of lithium bromide (LiBr) have been prepared by a solution casting technique and characterized by XRD, FTIR, DSC, and AC impedance technique. One gram of K-carrageenan with 0.5 wt% of LiBr has the highest conductivity as 3.43 × 10−3 Scm−1 at room temperature, and it has high amorphous nature as per the powder XRD results. FTIR confirms the complex formation between LiBr and K-carrageenan. The shift in glass transition temperature (Tg) of the membrane is observed from the DSC. The highest-conducting polymer electrolyte has a glass transition temperature of 44.55 °C. The DC polarization technique proves that the conductivity is due to ions. Lithium ion–conducting battery has been constructed using the highest-conducting biopolymer electrolyte membrane, and its output voltage is measured.


Biopolymer Lithium bromide Conductivity Amorphous nature Li-ion battery 



  1. 1.
    Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195:4554–4569CrossRefGoogle Scholar
  2. 2.
    Meng C, Liu C, Chen L, Hu C, Fan S (2010) Highly flexible and all-solid-state paper like polymer supercapacitors. Nano Lett 10:4025–4403CrossRefGoogle Scholar
  3. 3.
    Rani M, Rudhziah S, Ahmad A, Mohamed N (2014) Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polymer 6:2371–2385CrossRefGoogle Scholar
  4. 4.
    Ahmad Khair AS, Arof AK (2010) Conductivity studies of starch based polymer electrolytes. Ionics 16:123–129CrossRefGoogle Scholar
  5. 5.
    Selvakumar M, Bhat DK (2008) LiClO4 doped cellulose acetate as biodegradable polymer electrolyte for supercapacitors. J Appl Polym Sci 110:594–602CrossRefGoogle Scholar
  6. 6.
    Vijayalekshmi V, Khastgir D (2017) Eco-friendly methane sulfonic acid and the sodium salt of dodecyl benzene sulfonic acid doped crosslinked chitosan based green polymer electrolyte membranes for fuel cell applications. J Membr Sci 523:45–59CrossRefGoogle Scholar
  7. 7.
    Perumal P, Christopher Selvin P, Selvasekarapandian S (2018) Characterization of biopolymer pectin with lithium chloride and its applications to electrochemical devices. Ionics 24:3259–3270. CrossRefGoogle Scholar
  8. 8.
    Vijaya N, Selvasekarapandian S, Sornalatha M, Sujithra KS, Monisha S (2017) Proton-conducting biopolymer electrolytes based on pectin doped with NH4X (X=Cl, Br). Ionics 23:2799–2808CrossRefGoogle Scholar
  9. 9.
    Selvalakshmi S, Vijaya N, Selvasekarapandian S, Premalatha M (2017) Biopolymer agar-agar doped with NH4SCN as solid polymer electrolyte for electrochemical cell application. J Appl Polym Sci 134(15).
  10. 10.
    Selvalakshmi S, Mathavan T, Selvasekarapandian S, Premalatha M (2017) Study on NH4I composition effect in agar–agar-based biopolymer electrolyte. Ionics 23(10):2791–2797CrossRefGoogle Scholar
  11. 11.
    Sampath Kumar L, Christopher Selvin P, Selvasekarapandian S, Manjuladevi R, Monisha S, Perumal P (2018) Tamarind seed polysaccharide biopolymer membrane for lithium-ion conducting battery. Ionics 24(12):1–11Google Scholar
  12. 12.
    Kingslin Mary Genova F, Selvasekarapandian S, Vijaya N, Sivadevi S, Premalatha M, Karthikeyan S (2017) Lithium ion-conducting polymer electrolytes based on PVA–PAN doped with lithium triflate. Ionics 23:2727–2734CrossRefGoogle Scholar
  13. 13.
    Kingslin Mary Genova F, Selvasekarapandian S, Karthikeyan S, Vijaya N, Pradeepa R, Sivadevi S (2015) Study on blend polymer (PVA–PAN) doped with lithium bromide. Polym Sci Ser A 57(6):851–862CrossRefGoogle Scholar
  14. 14.
    Christopher Selvin P, Perumal P, Selvasekarapandian S, Monisha S, Boopathi G, Leena Chandra MV (2018) Study of proton-conducting polymer electrolyte based on K-carrageenan and NH4SCN for electrochemical devices. Ionics 24:3535–3542. CrossRefGoogle Scholar
  15. 15.
    Zainuddin NK, Samsudin AS (2018) Investigation on the effect of NH4Br at transport properties in K-carrageenan based biopolymer electrolytes via structural and electrical analysis. Mater Today Commun 14:199–209CrossRefGoogle Scholar
  16. 16.
    Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S, Boopathi G, Aristatil G, Arun A, Madeswaran S (2017) Proton-conducting I-carrageenan-based biopolymer electrolyte for fuel cell application. Ionics 23:2775–2780. CrossRefGoogle Scholar
  17. 17.
    Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Boopathi G (2018) Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. J Non-Cryst Solids 481:424–434CrossRefGoogle Scholar
  18. 18.
    Shuhaimi NEA, Alias NA, Majid SR, Arof AK (2008) Electrical double layer capacitor with proton conducting K-carrageenan chitosan electrolytes. Funct Mater Lett 1:195–201CrossRefGoogle Scholar
  19. 19.
    Singh R, Polu AR, Bhattacharya B, Rhee H-W, Singh CVP (2016) Perspectives for solid biopolymer electrolytes in dye-sensitized solar cell and battery application. Renew Sust Energ Rev 65:1098–1117CrossRefGoogle Scholar
  20. 20.
    Liang L, Ni R, Yang S, Mao S (2014) Carrageenan and its application in drug delivery. Carbo Hydr Polym 103:1–11CrossRefGoogle Scholar
  21. 21.
    Campo VL, Kowano DF, da Silva DB Jr, Carvalho I (2009) K-carrageenan: biological properties, chemical modifications, and structural analysis- a review. Carbo Hydr Polym 77:167–180CrossRefGoogle Scholar
  22. 22.
    Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semi crystalline poly (vinyl alcohol) films. Polymer 37:1371–1376CrossRefGoogle Scholar
  23. 23.
    Nithya S, Selvasekarapandian S, Karthikeyan S, Inbavalli D, Sikkanthar S, Sanjeeviraja C (2014) AC impedance studies on proton conducting PAN-NH4SCN polymer electrolytes. Ionics 20(10):1391–1398CrossRefGoogle Scholar
  24. 24.
    Nithya S, Selvasekarapandian S, Karthikeyan S, Vinoth Pandi D (2015) Effect of propylene carbonate on the ionic conductivity of polyacrylonitrile-based solid polymer electrolytes. J Appl Polym Sci 132(14).
  25. 25.
    Hemalatha R, Alagar M, Selvasekarapandian S, Sundaresan B, Moniha V, Boopathi G, Christopher Selvin P (2016) Preparation and characterization of proton-conducting polymer electrolyte based on PVA, amino acid proline, and NH4Cl and its applications to electrochemical devices. Ionics 25:141–154. CrossRefGoogle Scholar
  26. 26.
    Boopathi G, Pugalendhi S, Selvasekarapandian S, Premalatha S, Monisha S, Aristatil G (2017) Development of proton conducting biopolymer membrane based on agar–agar for the fuel cell. Ionics 23:2781–2790CrossRefGoogle Scholar
  27. 27.
    Priya SS, Karthika M, Selvasekarapandian S, Manjuladevi R, Monisha (2018) Study of biopolymer I-carrageenan with magnesium perchlorate. Ionics 24:3861–3875. CrossRefGoogle Scholar
  28. 28.
    Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Aristatil G, Mani N, Premalatha M (2017) Investigation of biopolymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym 157:38–47CrossRefGoogle Scholar
  29. 29.
    Nirmala Devi G, Chitra S, Selvasekarapandian S, Premalatha M, Monisha S, Saranya J (2017) Synthesis and characterization of dextrin-based polymer electrolytes for potential applications in energy storage devices. Ionics 23:3377–3388. CrossRefGoogle Scholar
  30. 30.
    Mahdavinia GR, Massoudi A, Baghban A, Shokri E (2014) Study of adsorption of cationic dye on magnetic kappa-carrageenan/ PVA nanocomposite hydrogels. J Environ Chem Eng 2:1578–1587CrossRefGoogle Scholar
  31. 31.
    Boukamp BA (1986a) A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 20:31–44CrossRefGoogle Scholar
  32. 32.
    Manjuladevi R, Thamilselvan M, Selvasekarapandian S, Christopher Selvin P, Mangalam R, Monisha S (2017) Preparation and characterization of blend polymer electrolyte film based on poly (vinyl alcohol)-poly (acrylonitrile)/MgCl2 for energy storage devices. Ionics 24:1083–1095. CrossRefGoogle Scholar
  33. 33.
    Bhuvaneswari R, Karthikeyan S, Selvasekarapandian S, VinothPandi D, Vijaya N, Araichimani A, Sanjeeviraja C (2014) Preparation and characterization of PVA complexed with amino acid proline. Ionics 21:387–399CrossRefGoogle Scholar
  34. 34.
    Vinoth Pandi D, Selvasekarapandian S, Bhuvaneswari R, Premalatha M, Monisha S, Arunkumar D, Junichi K (2016) Development and characterization of proton conducting polymer electrolyte based on PVA, amino acid glycine and NH4SCN. Solid State Ionics 298:15–22CrossRefGoogle Scholar
  35. 35.
    Premalatha M, Mathavan T, Selvasekarapandian S, Monisha S, Vinoth Pandi D, Selvalakshmi S (2016) Investigations on proton conducting biopolymer membranes based on tamarind seed polysaccharide incorporated with ammonium thiocyanate. J Non-Cryst Solids 453:131–140CrossRefGoogle Scholar
  36. 36.
    Manjuladevi R, Thamilselvan M, Selvasekarapandian S, Mangalam R, Premalatha M, Monisha S (2017) Mg-ion conducting blend polymer electrolyte based on poly (vinyl alcohol) - poly (acrylonitrile) with magnesium perchlorate. Solid State Ionics 308:90–100CrossRefGoogle Scholar
  37. 37.
    Nurath Unnisa C, Chitra S, Selvasekarapandian S, Monisha S, Nirmala Devi G, Moniha V, Hema M (2018) Development of poly (glycerol suberate) polyester (PGS)–PVA blend polymer electrolytes with NH4SCN and its application. Ionics.
  38. 38.
    Ramya CS, Selvasekarapandian S, Hirankumar G, Savitha T, Angelo PC (2008) Investigation on dielectric relaxations of PVP–NH4SCN polymer electrolyte. J Non-Cryst Solids 354:1494–1502CrossRefGoogle Scholar
  39. 39.
    Wagner JB, Wagner C (1957) Electrical conductivity measurements on cuprous halides. J Chem Phys 26:1597–1601CrossRefGoogle Scholar
  40. 40.
    Mishra K, Rai DK (2013) Studies of a plasticized PEO + NH4PF6 proton-conducting polymer electrolyte system and its application in a proton battery. J Korean Phys Soc 62:311–319CrossRefGoogle Scholar
  41. 41.
    Chitra R, Sathya P, Selvasekarapandian S, Monisha S, Moniha V, Meyvel S (2018) Synthesis and characterization of iota-carrageenan solid biopolymer electrolytes for electrochemical applications. Ionics 25:2147–2157. CrossRefGoogle Scholar
  42. 42.
    Premalatha M, Mathavan T, Selvasekarapandian S, Monisha S, Selvalakshmi S, Vinoth Pandi D (2017) Tamarind seed polysaccharide (TSP)-based li-ion conducting membranes. Ionics 23(10):2677–2684CrossRefGoogle Scholar
  43. 43.
    Subba Reddy CV, Sharma AK, Narasimha Rao VVR (2003) Conductivity and discharge characteristics of polyblend (PVP +PVA + KIO3) electrolyte. J Power Sources 114(2):338–345CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • I. Arockia Mary
    • 1
    • 2
    • 3
  • S. Selvanayagam
    • 1
  • S. Selvasekarapandian
    • 3
    • 4
    Email author
  • S. R. Srikumar
    • 5
  • T. Ponraj
    • 3
    • 6
  • V. Moniha
    • 3
    • 7
  1. 1.Department of PhysicsGovernment Arts College, MelurMaduraiIndia
  2. 2.Department of PhysicsHoly Cross CollegeTrichyIndia
  3. 3.Materials Research CentreCoimbatoreIndia
  4. 4.Department of PhysicsBharathiar UniversityCoimbatoreIndia
  5. 5.Department of PhysicsKalasalingam Academy of Research and EducationSrivilliputhurIndia
  6. 6.Department of PhysicsN.G.M CollegePollachiIndia
  7. 7.Centre for Research and Post Graduate Studies in PhysicsAyya Nadar Janaki Ammal CollegeSivakasiIndia

Personalised recommendations