pp 1–8 | Cite as

Improved sensing performances of NO2 sensors based on YSZ and porous sensing electrode prepared by MnCr2O4 admixed with phenol-formaldehyderesin microspheres

  • Quan DiaoEmail author
  • Xiaomei Zhang
  • Jie Li
  • Yuna Yin
  • Mingli JiaoEmail author
  • Jian Cao
  • Chaohua Su
  • Kai Yang
Original Paper


The phenol-formaldehyde (PF) resin microspheres were firstly used as the template in the sensing electrode (SE) preparation process of sensors based on Y2O3 stabilized ZrO2 (YSZ). The PF resin microspheres were synthesized by a facile hydrothermal method. The high char yield and the few morphological changes of PF resin microspheres before and after sintering at 900 °C indicated the perfect thermal stability at high temperature. The sensors using MnCr2O4 admixed with various contents PF microspheres (0 wt%, 5 wt%, 10 wt%, and 20 wt%) were fabricated and their sensing performances on NO2 gas were also investigated. The sensor with sensing electrode prepared by MnCr2O4 with 10 wt% PF showed the best NO2 sensing performance with a response of 110.8 mV to 100 ppm NO2 as well as the higher sensitivity (87.4 mV/decade) with the NO2 concentration ranging from 10 to 500 ppm at 550 °C. According to the mixed-potential mechanism, the porous electrode is good for gas penetration, so the gas can easily reach the MnCr2O4/YSZ/gas triple phase boundary (TPB) to participate in the electrochemical reactions. Additionally, the sensor exhibited excellent selectivity and repeatability, which indicated its potential application in the NO2 detection.


YSZ Mixed-potential Gas sensor PF resin microspheres MnCr2O4 


Funding information

Supported by NSFC (No. 61703446), Science and Technology Projects of China National Textile and Apparel Council (No. 2016048), Henan Province Colleges and Universities Key Scientific Research Project (No. 17A430035) and Program for Science and Technology Innovation Talents in Universities of Henan Province (No. 19HASTIT024). This work was also supported by Program for Interdisciplinary Direction Team in Zhongyuan University of Technology, China.


  1. 1.
    Xiao Y, Wang D, Cai G, Zheng Y, Zhong F (2016) A GdAlO3 perovskite oxide electrolyte-based NOx solid-state sensor. Sci Rep 6:37795CrossRefGoogle Scholar
  2. 2.
    Anggraini SA, Yoshida S, Ikeda H, Miura N (2018) Selective NO2 detection using YSZ-based amperometric sensor attached with NiFe2O4 (+Fe2O3 ) sensing electrode. Sensors Actuators B Chem 259:30–35CrossRefGoogle Scholar
  3. 3.
    Pal N, Murray EP (2018) Dense LaSrMnO3 composite electrodes for NOx sensing. Sensors Actuators B Chem 256:351–358CrossRefGoogle Scholar
  4. 4.
    Rauch D, Albrecht G, Kubinski D, Moos R (2015) A microwave-based method to monitor the ammonia loading of a vanadia-based SCR catalyst. Appl Catal, B 165:36–42CrossRefGoogle Scholar
  5. 5.
    Jin H, Zhang X, Hua C, Zhang X, Zou J, Shen W, Jian J (2018) Further enhancement of the light-regulated mixed-potential signal with ZnO-based electrodes. Sensors Actuators B Chem 255:3516–3522CrossRefGoogle Scholar
  6. 6.
    Zhang H, Yi J, Jiang X (2017) Fast response, highly sensitive and selective mixed-potential H2 sensor based on (La, Sr)(Cr, Fe)O3-delta perovskite sensing electrode. ACS Appl Mater Interfaces 9(20):17218–17225CrossRefGoogle Scholar
  7. 7.
    Li Y, Li X, Tang Z, Wang J, Yu J, Tang Z (2016) Potentiometric hydrogen sensors based on yttria-stabilized zirconia electrolyte (YSZ) and CdWO4 interface. Sensors Actuators B Chem 223:365–371CrossRefGoogle Scholar
  8. 8.
    Ueda T, Abe H, Kamada K, Bishop SR, Tuller HL, Hyodo T, Shimizu Y (2017) Enhanced sensing response of solid-electrolyte gas sensors to toluene: role of composite Au/metal oxide sensing electrode. Sensors Actuators B Chem 252:268–276CrossRefGoogle Scholar
  9. 9.
    Iio A, Ikeda H, Anggraini SA, Miura N (2014) Potentiometric YSZ-based oxygen sensor using BaFeO3 sensing-electrode. Electrochem Commun 48:134–137CrossRefGoogle Scholar
  10. 10.
    Akasaka S (2016) Thin film YSZ-based limiting current-type oxygen and humidity sensor on thermally oxidized silicon substrates. Sensors Actuators B Chem 236:499–505CrossRefGoogle Scholar
  11. 11.
    Sadaoka Y, Mori M (2017) Detection of VOC in air with a planar-type potentiometric gas sensor based on YSZ with a Pt electrode modified with TiO 2. Sensors Actuators B Chem 248:878–885CrossRefGoogle Scholar
  12. 12.
    Xu J, Wang C, Yang B, Yu H, Xia F, Xiao J (2019) Superior sensitive NiFe2O4 electrode for mixed-potential NO2 sensor. Ceram Int 45(3):2962–2967CrossRefGoogle Scholar
  13. 13.
    Keller TF, Volkov S, Navickas E, Kulkarni S, Vonk V, Fleig J, Stierle A (2019) Nano-scale oxide formation inside electrochemically-formed Pt blisters at a solid electrolyte interface. Solid State Ionics 330:17–23CrossRefGoogle Scholar
  14. 14.
    Ritter T, Hagen G, Lattus J, Moos R (2018) Solid state mixed-potential sensors as direct conversion sensors for automotive catalysts. Sensors Actuators B Chem 255:3025–3032CrossRefGoogle Scholar
  15. 15.
    Ueda T, Sakai M, Kamada K, Hyodo T, Shimizu Y (2016) Effects of composition and structure of sensing electrode on NO2 sensing properties of mixed potential-type YSZ-based gas sensors. Sensors Actuators B Chem 237:247–255CrossRefGoogle Scholar
  16. 16.
    Liu Y, Dai L, Hou H, Li Y, Meng W, Wang L (2016) Mixed-potential type NO2 sensor based on La10Si6O27 electrolyte and WO3 sensing electrode with different morphologies. Ceram Int 42(8):9712–9716CrossRefGoogle Scholar
  17. 17.
    Mahendraprabhu K, Selva Sharma A, Elumalai P (2019) CO sensing performances of YSZ-based sensor attached with sol-gel derived ZnO nanospheres. Sensors Actuators B Chem 283:842–847CrossRefGoogle Scholar
  18. 18.
    Miura N, Sato T, Anggraini SA, Ikeda H, Zhuiykov S (2014) A review of mixed-potential type zirconia-based gas sensors. Ionics 20(7):901–925CrossRefGoogle Scholar
  19. 19.
    Liu Y, Parisi J, Sun X, Lei Y (2014) Solid-state gas sensors for high temperature applications-a review. J Mater Chem A 2(26):9919–9943CrossRefGoogle Scholar
  20. 20.
    Hao X, Wu D, Wang Y, Ouyang J, Wang J, Liu T, Liang X, Zhang C, Liu F, Yan X, Gao Y, Lu G (2019) Gas sniffer (YSZ-based electrochemical gas phase sensor) toward acetone detection. Sensors Actuators B Chem 278:1–7CrossRefGoogle Scholar
  21. 21.
    Son C, Bhardwaj A, Hong J-W, Kim J-W, Moon H-S, Noh H-S, Song S-J (2017) Preparation and characterization of plasma-sprayed yttria stabilized zirconia as a potential substrate for NOx sensor. Ceram Int 43(5):4083–4089CrossRefGoogle Scholar
  22. 22.
    Wang J, Wang C, Liu A, You R, Liu F, Li S, Zhao L, Jin R, He J, Yang Z, Sun P, Yan X, Lu G (2019) High-response mixed-potential type planar YSZ-based NO2 sensor coupled with CoTiO3 sensing electrode. Sensors Actuators B Chem 287:185–190CrossRefGoogle Scholar
  23. 23.
    Wang C, Xu J, Yang B, Xia F, Zhu Y, Xiao J (2018) Effect of MgO doping on the BiVO4 sensing electrode performance for YSZ-based potentiometric ammonia sensor. Solid State Electron 147:19–25CrossRefGoogle Scholar
  24. 24.
    Mokrushin AS, Simonenko EP, Simonenko NP, Bukunov KA, Sevastyanov VG, Kuznetsov NT (2018) Microstructure, phase composition, and gas-sensing properties of nanostructured ZrO2-xY2O3 thin films and powders obtained by the sol-gel method. Ionics 25(3):1259–1270CrossRefGoogle Scholar
  25. 25.
    Bhardwaj A, Bae H, Namgung Y, Lim J, Song S-J (2019) Influence of sintering temperature on the physical, electrochemical and sensing properties of α-Fe2O3-SnO2 nanocomposite sensing electrode for a mixed-potential type NOx sensor. Ceram Int 45(2):2309–2318CrossRefGoogle Scholar
  26. 26.
    Bhardwaj A, J-w H, Kim I-H, Namgung Y, Song S-J (2019) Effects of electronic probe’s architecture on the sensing performance of mixed-potential based NOx sensor. Sensors Actuators B Chem 282:426–436CrossRefGoogle Scholar
  27. 27.
    Zheng X, Zhang C, Xia J, Zhou G, Jiang D, Wang S, Li X, Shen Y, Dai M, Wang B, Li Q (2019) Mesoporous tungsten oxide electrodes for YSZ-based mixed potential sensors to detect NO2 in the sub ppm-range. Sensors Actuators B Chem 284:575–581CrossRefGoogle Scholar
  28. 28.
    Miura N, Wang J, Elumalai P, Ueda T, Terada D, Hasei M (2007) Improving NO2 sensitivity by adding WO3 during processing of NiO sensing-electrode of mixed-potential-type zirconia-based sensor. J Electrochem Soc 154(8):J246CrossRefGoogle Scholar
  29. 29.
    Diao Q, Yin C, Liu Y, Li J, Gong X, Liang X, Yang S, Chen H, Lu G (2013) Mixed-potential-type NO2 sensor using stabilized zirconia and Cr2O3-WO3 nanocomposites. Sensors Actuators B Chem 180:90–95CrossRefGoogle Scholar
  30. 30.
    Meng Y, Gu D, Zhang F, Shi Y, Yang H, Li Z, Yu C, Tu B, Zhao D (2005) Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew Chem Int Ed Eng 44(43):7053–7059CrossRefGoogle Scholar
  31. 31.
    Meng Y, Gu D, Zhang F, Shi Y, Cheng L, Feng D, Wu Z, Chen Z, Wan Y, Stein A, Zhao D (2006) A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly. Chem Mater 18(18):4447–4464CrossRefGoogle Scholar
  32. 32.
    Muylaert I, Verberckmoes A, De Decker J, Van Der Voort P (2012) Ordered mesoporous phenolic resins: highly versatile and ultra stable support materials. Adv Colloid Interf Sci 175:39–51CrossRefGoogle Scholar
  33. 33.
    Diao Q, Yin C, Guan Y, Liang X, Wang S, Liu Y, Hu Y, Chen H, Lu G (2013) The effects of sintering temperature of MnCr2O4 nanocomposite on the NO2 sensing property for YSZ-based potentiometric sensor. Sensors Actuators B Chem 177:397–403CrossRefGoogle Scholar
  34. 34.
    Jiao M, Yang K, Diao Q, Gong RH, Ren D, Cao J (2017) Effect of Monophenyl borate on properties of high-ortho phenolic fibers. Fiber Polym 18(5):875–881CrossRefGoogle Scholar
  35. 35.
    Jiao M, Yang K, Cao J, Diao Q, Zhang W, Yu M (2016) Influence of epichlorohydrin content on structure and properties of high-ortho phenolic epoxy fibers. J Appl Polym Sci 133(18):43375CrossRefGoogle Scholar
  36. 36.
    Liu F, Wang B, Yang X, Guan Y, Wang Q, Liang X, Sun P, Wang Y, Lu G (2017) High-temperature NO2 gas sensor based on stabilized zirconia and CoTa2O6 sensing electrode. Sensors Actuators B Chem 240:148–157CrossRefGoogle Scholar
  37. 37.
    Ménil F, Coillard V, Lucat C (2000) Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines. Sensors Actuators B Chem 67(1–2):1–23CrossRefGoogle Scholar
  38. 38.
    Szabo N, Dutta PK (2003) Strategies for total NOx measurement with minimal CO interference utilizing a microporous zeolitic catalytic filter. Sensors Actuators B Chem 88(2):168–177CrossRefGoogle Scholar
  39. 39.
    Zhuiykov S, Miura N (2007) Development of zirconia-based potentiometric NOx sensors for automotive and energy industries in the early 21st century: what are the prospects for sensors? Sensors Actuators B Chem 121(2):639–651CrossRefGoogle Scholar
  40. 40.
    Anggraini SA, Fujio Y, Ikeda H, Miura N (2017) YSZ-based sensor using Cr-Fe-based spinel-oxide electrodes for selective detection of CO. Anal Chim Acta 982:176–184CrossRefGoogle Scholar
  41. 41.
    Cai H, Sun R, Yang X, Liang X, Wang C, Sun P, Liu F, Zhao C, Sun Y, Lu G (2016) Mixed-potential type NOx sensor using stabilized zirconia and MoO3-In2O3 nanocomposites. Ceram Int 42(10):12503–12507CrossRefGoogle Scholar
  42. 42.
    You R, Wang T, Yu H, Wang J, Lu G, Liu F, Cui T (2018) Mixed-potential-type NO2 sensors based on stabilized zirconia and CeO2-B2O3 (B = Fe, Cr) binary nanocomposites sensing electrodes. Sensors Actuators B Chem 266:793–804CrossRefGoogle Scholar
  43. 43.
    Wang J, Yu Z, Wang L, Wang B, Liu F, Liang X, Sun P, Yan X, Chuai X, Lu G (2017) Improvement of NO2 sensing characteristic for mixed potential type gas sensor based on YSZ and Rh/Co3V2O8 sensing electrode. RSC Adv 7(78):49440–49445CrossRefGoogle Scholar
  44. 44.
    Zhou L, Li X, Wu H, Liao Z, Yuan Q, Xia F, Xiao J (2014) Sensing properties of YSZ-based NOx sensors with double-perovskite (La0.8Sr0.2)2FeNiO6−δ-sensing electrodes. Ceram Int 40(7):9257–9263CrossRefGoogle Scholar
  45. 45.
    Elumalai P, Plashnitsa VV, Ueda T, Hasei M, Miura N (2007) Dependence of NO2 sensitivity on thickness of oxide-sensing electrodes for mixed-potential-type sensor using stabilized zirconia. Ionics 12(6):331–337CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials & Chemical EngineeringZhongyuan University of TechnologyZhengzhouChina
  2. 2.School of FashionZhongyuan University of TechnologyZhengzhouChina

Personalised recommendations