Advertisement

Ionics

pp 1–9 | Cite as

Nitrogen-doped carbon-coated cotton-derived carbon fibers as high-performance anode materials for lithium-ion batteries

  • Xinglian Liu
  • Yanshuang MengEmail author
  • Ruinian Li
  • Mengqi Du
  • Fuliang Zhu
  • Yue ZhangEmail author
Original Paper
  • 2 Downloads

Abstract

Nitrogen-doped carbon-coated cotton-derived carbon fibers (NC@CCFs) were prepared by using cotton fibers as substrate and ionic liquid [HMIm]N(CN)2 as source of carbon and nitrogen. The scanning electron microscopy, EDS element map, and X-ray photoelectron spectroscopy indicated that N-doped carbon uniformly coated on cotton-derived carbon fibers and the N element was successfully doped into NC@CCFs materials. This structure effectively improved the structural stability of NC@CCFs. The highly conductive CCFs provided conductivity network for electron transport in the NC@CCFs. Nitrogen doping provided abundant active sites and introduced many defects, which increased the lithium storage active sites of NC@CCFs. Therefore, the NC@CCFs anode shows excellent cycle stability (614.3 mAhg−1 at 0.5 C after 250 cycles) and rate performance when used in lithium-ion battery.

Keywords

N-doped carbon Ionic liquid Cotton-derived carbon fibers Lithium-ion batteries 

Notes

Funding information

The authors received support from the National Natural Science Foundation of China (NFSC) (grant nos. 51364024, 51404124) and from the Faculty Research Seed Grants Program of Georgia Southern University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Wang L, Fu YY, Chen YQ, Li YF, Zhou RH, Chen SH, Song YH (2017) Ultralight flower ball-like Co3O4/melamine-derived carbon foam as anode materials for lithium-ion batteries. J Alloys Compd 724:1117–1123CrossRefGoogle Scholar
  2. 2.
    Yang J, Zhou X-Y, Li J, Zou Y-L, Tang J-J (2012) Study of nano-porous hard carbons as anode materials for lithium ion batteries. Mater Chem Phys 135:445–450CrossRefGoogle Scholar
  3. 3.
    Guo B, Wang X, Fulvio PF, Chi M, Mahurin SM, Sun XG, Dai S (2011) Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv Mater 23:4661–4666CrossRefGoogle Scholar
  4. 4.
    Kim C, Yang KS, Kojima M, Yoshida K, Kim YJ, Kim YA, Endo M (2006) Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of Lithium-ion secondary batteries. Adv Funct Mater 16:2393–2397CrossRefGoogle Scholar
  5. 5.
    Han F-D, Bai Y-J, Liu R, Yao B, Qi Y-X, Lun N, Zhang J-X (2011) Template-free synthesis of interconnected hollow carbon nanospheres for high-performance anode material in Lithium-ion batteries. Adv Energy Mater 1:798–801CrossRefGoogle Scholar
  6. 6.
    Wang G, Shen X, Yao J, Park J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47:2049–2053CrossRefGoogle Scholar
  7. 7.
    Roberts AD, Li X, Zhang H (2014) Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem Soc Rev 43:4341–4356CrossRefGoogle Scholar
  8. 8.
    Wen Y, Huang C, Wang L, Hulicova-Jurcakova D (2014) Heteroatom-doped graphene for electrochemical energy storage. Chin Sci Bull 59:2102–2121CrossRefGoogle Scholar
  9. 9.
    Wang C, Guo Z, Shen W, Xu Q, Liu H, Wang Y (2014) B-doped carbon coating improves the electrochemical performance of electrode materials for Li-ion batteries. Adv Funct Mater 24:5511–5521CrossRefGoogle Scholar
  10. 10.
    Sahoo M, Sreena KP, Vinayan BP, Ramaprabhu S (2015) Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery. Mater Res Bull 61:383–390CrossRefGoogle Scholar
  11. 11.
    Ruan J, Yuan T, Pang Y, Luo S, Peng C, Yang J, Zheng S (2018) Nitrogen and sulfur dual-doped carbon films as flexible free-standing anodes for Li-ion and Na-ion batteries. Carbon 126:9–16CrossRefGoogle Scholar
  12. 12.
    Xia Q, Yang H, Wang M, Yang M, Guo Q, Wan L, Xia H, Yu Y (2017) High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode. Adv Energy Mater 7:1701336CrossRefGoogle Scholar
  13. 13.
    Islam MM, Subramaniyam CM, Akhter T, Faisal SN, Minett AI, Liu HK, Konstantinov K, Dou SX (2017) Three dimensional cellular architecture of sulfur doped graphene: self-standing electrode for flexible supercapacitors, lithium ion and sodium ion batteries. J Mater Chem A 5:5290–5302CrossRefGoogle Scholar
  14. 14.
    Cui Z, Wang S, Zhang Y, Cao M (2014) A simple and green pathway toward nitrogen and sulfur dual doped hierarchically porous carbons from ionic liquids for oxygen reduction. J Power Sources 259:138–144CrossRefGoogle Scholar
  15. 15.
    Yongzhi Z, Li C, Yan M, Jun X, Yong G, Dan X (2016) Lithium and sodium storage in highly ordered mesoporous. J Power Sources 335:20–30CrossRefGoogle Scholar
  16. 16.
    Lin J, Xu Y, Wang J, Zhang B, Li D, Wang C, Jin Y, Zhu J (2018) Nitrogen-doped hierarchically porous carbonaceous nanotubes for lithium ion batteries. Chem Eng J 352:964–971CrossRefGoogle Scholar
  17. 17.
    Cui Y, Wang H, Xu X, Lv Y, Shi J, Liu W, Chen S, Wang X (2018) Nitrogen-doped porous carbons derived from a natural polysaccharide for multiple energy storage devices. Sustainable Energy Fuels 2:381–391CrossRefGoogle Scholar
  18. 18.
    Shen X, Jiang W, Sun H, Wang Y, Dong A, Hu J, Yang D (2017) Ionic liquid assist to prepare Si@N-doped carbon nanoparticles and its high performance in lithium ion batteries. J Alloys Compd 691:178–184CrossRefGoogle Scholar
  19. 19.
    Lee JS, Wang X, Lou H, Baker GA, Dai S (2009) Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. Am Chem Soc 131:4596–4597CrossRefGoogle Scholar
  20. 20.
    Liu C, Tang P, Chen A, Hu Y, Yu Y, Lv H, Ma D (2013) One-step assembly of N-doped partially graphitic mesoporous carbon for nitrobenzene reduction. Mater Lett 108:285–288CrossRefGoogle Scholar
  21. 21.
    Ou J, Zhang Y, Chen L, Zhao Q, Meng Y, Guo Y, Xiao D (2015) Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries. J Mater Chem A 3:6534–6541CrossRefGoogle Scholar
  22. 22.
    Chen L, Zhang Y, Lin C, Yang W, Meng Y, Guo Y, Li M, Xiao D (2014) Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries. J Mater Chem A 2:9684–9690CrossRefGoogle Scholar
  23. 23.
    Jiang J, Zhu J, Ai W, Fan Z, Shen X, Zou C, Liu J, Zhang H, Yu T (2014) Evolution of disposable bamboo chopsticks into uniform carbon fibers: a smart strategy to fabricate sustainable anodes for Li-ion batteries. Energy Environ Sci 7:2670–2679CrossRefGoogle Scholar
  24. 24.
    Xu G, Han J, Ding B, Nie P, Pan J, Dou H, Li H, Zhang X (2015) Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem 17:1668–1674CrossRefGoogle Scholar
  25. 25.
    Li KQ, Zhang Y, Sun YN, Xu YL, Zhang H, Ye P, Zheng MD, Zhou N, Wang D (2018) Template-free synthesis of biomass-derived carbon coated Li4Ti5O12 microspheres as high performance anodes for lithium-ion batteries. Appl Surf Sci 459:572–582CrossRefGoogle Scholar
  26. 26.
    Xu K, Li Y, Xiong J, Ou X, Su W, Zhong G, Yang C (2018) Activated amorphous carbon with high-porosity derived from camellia pollen grains as anode materials for lithium/sodium ion batteries. Front Chem 6:366CrossRefGoogle Scholar
  27. 27.
    Xue J, Zhao Y, Cheng H, Hu C, Hu Y, Meng Y, Shao H, Zhang Z, Qu L (2013) An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. Phys Chem Chem Phys 15:8042–8045CrossRefGoogle Scholar
  28. 28.
    Zhu C, Akiyama T (2016) Cotton derived porous carbon via an MgO template method for high performance lithium ion battery anodes. Green Chem 18:2106–2114CrossRefGoogle Scholar
  29. 29.
    Yang C, Xiong J, Ou X, Wu C-F, Xiong X, Wang J-H, Huang K, Liu M (2018) A renewable natural cotton derived and nitrogen/sulfur co-doped carbon as a high-performance sodium ion battery anode. Mater Today Energy 8:37–44CrossRefGoogle Scholar
  30. 30.
    Yang S, Han Z, Zheng F, Sun J, Qiao Z, Yang X, Li L, Li C, Song X, Cao B (2018) ZnFe2O4 nanoparticles-cotton derived hierarchical porous active carbon fibers for high rate-capability supercapacitor electrodes. Carbon 134:15–21CrossRefGoogle Scholar
  31. 31.
    Li Y, Hu Y-S, Titirici M-M, Chen L, Huang X (2016) Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 6:1600659CrossRefGoogle Scholar
  32. 32.
    Tian W, Wen Z, Sun C, Xiangwei W, zhang S, Yang J (2018) Disordered carbon tubes based on cotton cloth for modulating the interface impedance in β″-Al2O3-based solid-state sodium metal batteries. J Mater Chem A 6:12623–12629CrossRefGoogle Scholar
  33. 33.
    Xiong J, Pan Q, Zheng F, Xiong X, Yang C, Hu D, Huang C (2018) N/S co-doped carbon derived from cotton as high performance anode materials for lithium ion batteries. Front Chem 6:78CrossRefGoogle Scholar
  34. 34.
    Guo R, Zhao L, Yue W (2015) Assembly of core–shell structured porous carbon–graphene composites as anode materials for lithium-ion batteries. Electrochim Acta 152:338–344CrossRefGoogle Scholar
  35. 35.
    Qiu Z, Lin Y, Xin H, Han P, Li D, Yang B, Li P, Ullah S, Fan H, Zhu C, Xu J (2018) Ultrahigh level nitrogen/sulfur co-doped carbon as high performance anode materials for lithium-ion batteries. Carbon 126:85–92CrossRefGoogle Scholar
  36. 36.
    Ma Y, Guo Q, Yang M, Wang Y, Chen T, Chen Q, Zhu X, Xia Q, Li S, Xia H (2018) Highly doped graphene with multi-dopants for high-capacity and ultrastable sodium-ion batteries. Energy Storage Mater 13:134–141CrossRefGoogle Scholar
  37. 37.
    Li Q-Y, Pan Q-C, Yang G-H, Lin X-L, Yan Z-X, Wang H-Q, Huang Y-G (2015) Synthesis of Sn/MoS2/C composites as high-performance anodes for lithium-ion batteries. J Mater Chem A 3:20375–20381CrossRefGoogle Scholar
  38. 38.
    Gao J, Ma N, Tian J, Shen C, Wang L, Yu P, Chu Y, Liu W, Tan X, Li X, Yin Z (2017) High performance of N, P co-doped metal-free carbon catalyst derived from ionic liquid for oxygen reduction reaction. J Solid State Electrochem 22:519–525CrossRefGoogle Scholar
  39. 39.
    Wang J, Gao D, Wang G, Miao S, Wu H, Li J, Bao X (2014) Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis. J Mater Chem A 2:20067–20074CrossRefGoogle Scholar
  40. 40.
    Ning G, Ma X, Zhu X, Cao Y, Sun Y, Qi C, Fan Z, Li Y, Zhang X, Lan X, Gao J (2014) Enhancing the Li storage capacity and initial coulombic efficiency for porous carbons by sulfur doping. ACS Appl Mater Interfaces 6:15950–15958CrossRefGoogle Scholar
  41. 41.
    Yang Y, Zheng F, Xia G, Lun Z, Chen Q (2015) Experimental and theoretical investigations of nitro-group doped porous carbon as a high performance lithium-ion battery anode. J Mater Chem A 3:18657–18666CrossRefGoogle Scholar
  42. 42.
    Du M, Meng Y, Wang C, Duan C, Zhu F, Zhang Y (2019) A simple synthesis of nitrogen-sulfur co-doped porous carbon using ionic liquids as dopant for high rate performance Li-ion batteries. J Electroanal Chem 834:17–25CrossRefGoogle Scholar
  43. 43.
    Zhou Y, Ren J, Xia L, Wu H, Xie F, Zheng Q, Xu C, Lin D (2017) Nitrogen-doped hierarchical porous carbon framework derived from waste pig nails for high-performance supercapacitors. ChemElectroChem 4:3181–3187CrossRefGoogle Scholar
  44. 44.
    Liu W, Yan X, Lang J, Peng C, Xue Q (2012) Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. J Mater Chem 22:17245–17253CrossRefGoogle Scholar
  45. 45.
    Li X, Geng D, Zhang Y, Meng X, Li R, Xueliang S (2011) Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem Commun 13:822–825CrossRefGoogle Scholar
  46. 46.
    Lv W, FushengWen XJ, Zhao J, Li L, Wang L, Liu Z, Tian Y (2015) Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochim Acta 176:533–541CrossRefGoogle Scholar
  47. 47.
    Li X, XiaoBo Z, Yongchun Z, Zhengqiu Y, LuLu S, Yitai Q (2014) Porous nitrogen-doped carbon vegetable-sponges with enhanced lithium storage performance. Carbon 69:515–524CrossRefGoogle Scholar
  48. 48.
    Hengguo W, Chenpei Y, Rui Z, Qian D, Yanhui L (2017) Self-sacrifice template formation of nitrogen-doped porous carbon microtubes towards high performance anode materials in lithium ion batteries. Chem Eng J 316:1004–1010CrossRefGoogle Scholar
  49. 49.
    Song Y, Zuo L, Chen S, Wu J, Hou H, Wang L (2015) Porous Nano-Si/carbon derived from zeolitic imidazolate frameworks@nano-Si as anode materials for Lithium-ion batteries. Electrochim Acta 173:588–594CrossRefGoogle Scholar
  50. 50.
    Chou S-L, Wang J-Z, Choucair M, Liu H-K, Stride JA, Dou S-X (2010) Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem Commun 12:303–306CrossRefGoogle Scholar
  51. 51.
    Yang S, Song H, Yi H, Liu W, Zhang H, Chen X (2009) Carbon nanotube capsules encapsulating SnO2 nanoparticles as an anode material for lithium ion batteries. Electrochim Acta 55:521–527CrossRefGoogle Scholar
  52. 52.
    Shen T, Xie D, Tang W, Wang D, Zhang X, Xia X, Wang X, Tu J (2017) Biomass-derived carbon/silicon three-dimensional hierarchical nanostructure as anode material for lithium ion batteries. Mater Res Bull 96:340–346CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringLanzhou University of TechnologyLanzhouChina
  2. 2.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous MetalsLanzhouChina
  3. 3.Department of Manufacturing EngineeringGeorgia Southern UniversityStatesboroUSA

Personalised recommendations