Advertisement

Ionics

pp 1–10 | Cite as

Simultaneous anodic stripping voltammetric determination of Pb(II) and Cd(II) using poly methyl thymol blue film–modified electrode

  • Ramalingam Manikandan
  • Sangilimuthu Sriman NarayananEmail author
Original Paper
  • 16 Downloads

Abstract

A poly methyl thymol blue (PMTB) film–modified electrode for sensitive and simultaneous determination of lead (II) and cadmium (II) ions using anodic stripping voltammetric techniques were presented. The modified PMTB film has been prepared on paraffin-impegrenated electrode (PIGE) using electrochemical polymerization method by applying potential between − 0.4 and 0.8 V at a scan rate of 50 mV s−1 for 30 segments in 0.1 M phosphate buffer, pH 7.0 containing 5 × 10−4 M of methyl thymol blue monomer. The PMTB film electrode has been characterized by FESEM, ATR-IR spectroscopy, and other electroanalytical techniques. In DPV, observed linear range for Pb(II) is 0.54 μg/L to 77.7 μg/L and for Cd(II) is 1.05 μg/L to 75.3 μg/L with a detection limit of 0.18 μg/L and 0.35 μg/L for Pb(II) and Cd(II) respectively. The modified electrode has been successfully tested for real samples analysis and the obtained results are compared with AAS techniques results.

Keywords

Electrochemical polymerization Poly methyl thymol blue Lead Cadmium Anodic stripping voltammetry 

Notes

Supplementary material

11581_2019_3143_MOESM1_ESM.doc (1 mb)
ESM 1 (DOC 1061 kb)

References

  1. 1.
    Bodo M, Balloni S, Lumare E, Bacci M, Calvitti M, Dell’Omo M, Murgia N, Marinucci L (2010) Effects of sub-toxic cadmium concentrations on bone gene expression program: results of an in vitro study. Toxicol in Vitro 24(6):1670–1680Google Scholar
  2. 2.
    Triunfante P, Soares ME, Santos A, Tavares S, Carmo H, de Lourdes BM (2009) Mercury fatal intoxication: two case reports. Forensic Sci Int 184(1–3):e1–e6Google Scholar
  3. 3.
    McGaw EA, Swain GM (2006) A comparison of boron-doped diamond thin-film and Hg-coated glassy carbon electrodes for anodic stripping voltammetric determination of heavy metal ions in aqueous media. Anal Chim Acta 575(2):180–189Google Scholar
  4. 4.
    Rahman MA, Won M-S, Shim Y-B (2003) Characterization of an EDTA bonded conducting polymer modified electrode: its application for the simultaneous determination of heavy metal ions. Anal Chem 75(5):1123–1129Google Scholar
  5. 5.
    Daşbaşı T, Saçmacı Ş, Ülgen A, Kartal Ş (2015) A solid phase extraction procedure for the determination of Cd (II) and Pb (II) ions in food and water samples by flame atomic absorption spectrometry. Food Chem 174:591–596Google Scholar
  6. 6.
    Thangavel S, Dash K, Dhavile S, Sahayam A (2015) Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP-OES). Talanta 131:505–509Google Scholar
  7. 7.
    Yamini Y, Rezaee M, Khanchi A, Faraji M, Saleh A (2010) Dispersive liquid–liquid microextraction based on the solidification of floating organic drop followed by inductively coupled plasma-optical emission spectrometry as a fast technique for the simultaneous determination of heavy metals. J Chromatogr A 1217(16):2358–2364Google Scholar
  8. 8.
    Yan Z, Jiang L, Xu C, Liu J (2018) Determination of chromium (III) ions in water samples by UV–vis spectrometry based on benzyl-functionalized benzimidazolylidene ligand. Water Science and Technology: Water Supply:ws2018032Google Scholar
  9. 9.
    Sitko R, Janik P, Zawisza B, Talik E, Margui E, Queralt I (2015) Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent. Anal Chem 87(6):3535–3542Google Scholar
  10. 10.
    Werner J (2018) Ionic liquid ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of the aqueous phase for preconcentration of heavy metals ions prior to determination by LC-UV. Talanta 182:69–73Google Scholar
  11. 11.
    Wei Z, Sandron S, Townsend A, Nesterenko P, Paull B (2015) Determination of trace labile copper in environmental waters by magnetic nanoparticle solid phase extraction and high-performance chelation ion chromatography. Talanta 135:155–162Google Scholar
  12. 12.
    Park MO, Noh HB, Park DS, Yoon JH, Shim YB (2017) Long-life heavy metal ions sensor based on graphene oxide-anchored conducting polymer. Electroanalysis 29(2):514–520Google Scholar
  13. 13.
    Gillain G, Duyckaerts G, Disteche A (1979) Direct and simultaneous determinations of Zn, Cd, Pb, Cu, Sb and Bi dissolved in sea water by differential pulse anodic stripping voltammetry with a hanging mercury drop electrode. Anal Chim Acta 106(1):23–37Google Scholar
  14. 14.
    de Oliveira MF, Saczk AA, Okumura LL, Fernandes AP, de Moraes M, Stradiotto NR (2004) Simultaneous determination of zinc, copper, lead, and cadmium in fuel ethanol by anodic stripping voltammetry using a glassy carbon–mercury-film electrode. Anal Bioanal Chem 380(1):135–140Google Scholar
  15. 15.
    de Oliveira PR, Lamy-Mendes AC, Gogola JL, Mangrich AS, Junior LHM, Bergamini MF (2015) Mercury nanodroplets supported at biochar for electrochemical determination of zinc ions using a carbon paste electrode. Electrochim Acta 151:525–530Google Scholar
  16. 16.
    Hočevar SB, Ogorevc B, Wang J, Pihlar B (2002) A study on operational parameters for advanced use of bismuth film electrode in anodic stripping voltammetry. Electroanalysis 14(24):1707–1712Google Scholar
  17. 17.
    Economou A (2005) Bismuth-film electrodes: recent developments and potentialities for electroanalysis. TrAC Trends Anal Chem 24(4):334–340Google Scholar
  18. 18.
    March G, Nguyen T, Piro B (2015) Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 5(2):241–275Google Scholar
  19. 19.
    Kokulnathan T, Ramaraj S, Chen S-M, Han-Yu Y (2018) Eco-friendly synthesis of biocompatible pectin stabilized graphene nanosheets hydrogel and their application for the simultaneous electrochemical determination of dopamine and paracetamol in real samples. J Electrochem Soc 165(5):B240–B249Google Scholar
  20. 20.
    Palanisamy S, Thangavelu K, Chen S-M, Velusamy V, Chang M-H, Chen T-W, Al-Hemaid FM, Ali MA, Ramaraj SK (2017) Synthesis and characterization of polypyrrole decorated graphene/β-cyclodextrin composite for low level electrochemical detection of mercury (II) in water. Sensors Actuators B Chem 243:888–894Google Scholar
  21. 21.
    Thangavelu K, Palanisamy S, Chen S-M, Velusamy V, Chen T-W, Ramaraj SK (2016) Electrochemical determination of caffeic acid in wine samples using reduced graphene oxide/polydopamine composite. J Electrochem Soc 163(14):B726–B731Google Scholar
  22. 22.
    Oztekin Y, Ramanaviciene A, Ryskevic N, Yazicigil Z, Üstündağ Z, Solak AO, Ramanavicius A (2011) 1, 10-Phenanthroline modified glassy carbon electrode for voltammetric determination of cadmium (II) ions. Sensors Actuators B Chem 157(1):146–153Google Scholar
  23. 23.
    Kapturski P, Bobrowski A (2008) The silver amalgam film electrode in catalytic adsorptive stripping voltammetric determination of cobalt and nickel. J Electroanal Chem 617(1):1–6Google Scholar
  24. 24.
    Zhao D, Siebold D, Alvarez NT, Shanov VN, Heineman WR (2017) Carbon nanotube thread electrochemical cell: detection of heavy metals. Anal Chem 89(18):9654–9663Google Scholar
  25. 25.
    Bobrowski A, Putek M, Zarębski J (2012) Antimony film electrode prepared in situ in hydrogen potassium tartrate in anodic stripping voltammetric trace detection of Cd (II), Pb (II), Zn (II), Tl (I), In (III) and Cu (II). Electroanalysis 24(5):1071–1078Google Scholar
  26. 26.
    Koyun O, Sahin Y (2018) Voltammetric determination of nitrite with gold nanoparticles/poly (methylene blue)-modified pencil graphite electrode: application in food and water samples. Ionics 24(10):3187–3197Google Scholar
  27. 27.
    Kuskur CM, Swamy BK, Jayadevappa H, Ganesh P (2018) Poly (rhodamine B) sensor for norepinephrine and paracetamol: a voltammetric study. Ionics 24(11):3631–3640Google Scholar
  28. 28.
    Promphet N, Rattanarat P, Rangkupan R, Chailapakul O, Rodthongkum N (2015) An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium. Sensors Actuators B Chem 207:526–534Google Scholar
  29. 29.
    Zhou X, Ye X, Wu K, Li C, Wang Y (2018) Electrochemical sensing of terabromobisphenol A at a polymerized ionic liquid film electrode and the enhanced effects of anions. Ionics 24(9):2843–2850Google Scholar
  30. 30.
    Palanisamy S, Thangavelu K, Chen S-M, Thirumalraj B, Liu X-H (2016) Preparation and characterization of gold nanoparticles decorated on graphene oxide@ polydopamine composite: application for sensitive and low potential detection of catechol. Sensors Actuators B Chem 233:298–306Google Scholar
  31. 31.
    Deshmukh MA, Celiesiute R, Ramanaviciene A, Shirsat MD, Ramanavicius A (2018) EDTA_PANI/SWCNTs nanocomposite modified electrode for electrochemical determination of copper (II), lead (II) and mercury (II) ions. Electrochim Acta 259:930–938Google Scholar
  32. 32.
    Shirsat MD, Deshmukh M, Bodkhe G, Shirsat S, Ramanavicius A (2018) Nanocomposite platform based on EDTA modified Ppy/SWNTs for the sensing of Pb (II) ions by electrochemical method. Front Chem 6:451Google Scholar
  33. 33.
    Mendham J (2006) Vogels textbook of quantitative chemical analysis. Pearson Education India,Google Scholar
  34. 34.
    Manikandan R, Deepa P, Narayanan SS (2018) Anodic stripping voltammetric determination of Hg (II) using poly xylenol orange film modified electrode. Ionics:1–8Google Scholar
  35. 35.
    Kumar SS, Narayanan SS (2008) Mechanically immobilized nickel aquapentacyanoferrate modified electrode as an amperometric sensor for the determination of BHA. Talanta 76(1):54–59Google Scholar
  36. 36.
    Liv L, Nakiboglu N (2018) Voltammetric determination of boron using poly xylenol orange-modified pencil graphite electrode. Anal Lett 51(1–2):170–185Google Scholar
  37. 37.
    Qian G, Yang C, Pu W, Huang J, Zhang J (2007) A novel polycatechol/platinum composite film prepared by electrochemical synthesis. Synth Met 157(10–12):448–453Google Scholar
  38. 38.
    Larkin P (2017) Infrared and Raman spectroscopy: principles and spectral interpretation. ElsevierGoogle Scholar
  39. 39.
    Yong K, Shao-Lin M (2003) Investigation on the electrochemical polymerization of catechol by means of rotating ring-disk electrode. Chin J Chem 21(6):630–637Google Scholar
  40. 40.
    Wang Z, Wang H, Zhang Z, Liu G (2014) Electrochemical determination of lead and cadmium in rice by a disposable bismuth/electrochemically reduced graphene/ionic liquid composite modified screen-printed electrode. Sensors Actuators B Chem 199:7–14Google Scholar
  41. 41.
    Lee S, Park S-K, Choi E, Piao Y (2016) Voltammetric determination of trace heavy metals using an electrochemically deposited graphene/bismuth nanocomposite film-modified glassy carbon electrode. J Electroanal Chem 766:120–127Google Scholar
  42. 42.
    Hwang GH, Han WK, Park JS, Kang SG (2008) Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta 76(2):301–308Google Scholar
  43. 43.
    Güell R, Aragay G, Fontas C, Anticó E, Merkoçi A (2008) Sensitive and stable monitoring of lead and cadmium in seawater using screen-printed electrode and electrochemical stripping analysis. Anal Chim Acta 627(2):219–224Google Scholar
  44. 44.
    Cerovac S, Guzsvány V, Kónya Z, Ashrafi AM, Švancara I, Rončević S, Kukovecz Á, Dalmacija B, Vytřas K (2015) Trace level voltammetric determination of lead and cadmium in sediment pore water by a bismuth-oxychloride particle-multiwalled carbon nanotube composite modified glassy carbon electrode. Talanta 134:640–649Google Scholar
  45. 45.
    Vu HD, Nguyen L-H, Nguyen TD, Nguyen HB, Nguyen TL (2015) Anodic stripping voltammetric determination of Cd 2+ and Pb 2+ using interpenetrated MWCNT/P1, 5-DAN as an enhanced sensing interface. Ionics 21(2):571–578Google Scholar
  46. 46.
    Sosa V, Barceló C, Serrano N, Ariño C, Díaz-Cruz JM, Esteban M (2015) Antimony film screen-printed carbon electrode for stripping analysis of Cd (II), Pb (II), and Cu (II) in natural samples. Anal Chim Acta 855:34–40Google Scholar
  47. 47.
    Nagles E, García-Beltrán O, Hurtado J (2016) Ex situ poly (3, 4-ethylenedioxythiophene)-sodium dodecyl sulfate-antimony film electrode for anodic stripping voltammetry determination of lead and cadmium. Int J Electrochem Sci 11:7507–7518Google Scholar
  48. 48.
    Chamjangali MA, Boroumand S, Bagherian G, Goudarzi N (2017) Construction and characterization a non-amalgamation voltammetric flow sensor for online simultaneous determination of lead and cadmium ions. Sensors Actuators B Chem 253:124–136Google Scholar
  49. 49.
    Xuan X, Park JY (2018) A miniaturized and flexible cadmium and lead ion detection sensor based on micro-patterned reduced graphene oxide/carbon nanotube/bismuth composite electrodes. Sensors Actuators B Chem 255:1220–1227Google Scholar
  50. 50.
    Dönmez KB, Çetinkaya E, Deveci S, Karadağ S, Şahin Y, Doğu M (2017) Preparation of electrochemically treated nanoporous pencil-graphite electrodes for the simultaneous determination of Pb and Cd in water samples. Anal Bioanal Chem 409(20):4827–4837Google Scholar
  51. 51.
    Crowley K, Cassidy J (2002) Trace analysis of lead at a nafion-modified electrode using square-wave anodic stripping voltammetry. Electroanalysis 14(15–16):1077–1082Google Scholar
  52. 52.
    Kefala G, Economou A, Voulgaropoulos A, Sofoniou M (2003) A study of bismuth-film electrodes for the detection of trace metals by anodic stripping voltammetry and their application to the determination of Pb and Zn in tapwater and human hair. Talanta 61(5):603–610Google Scholar
  53. 53.
    Prabakar SR, Sakthivel C, Narayanan SS (2011) Hg (II) immobilized MWCNT graphite electrode for the anodic stripping voltammetric determination of lead and cadmium. Talanta 85(1):290–297Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ramalingam Manikandan
    • 1
  • Sangilimuthu Sriman Narayanan
    • 1
    Email author
  1. 1.Department of Analytical Chemistry, School of Chemical SciencesUniversity of MadrasChennaiIndia

Personalised recommendations