Advertisement

Ionics

pp 1–9 | Cite as

A 2.4-V asymmetric supercapacitor based on cation-intercalated manganese oxide nanosheets in a low-cost “water-in-salt” electrolyte

  • Xudong BuEmail author
  • Yurong Zhang
  • Lijun Su
  • Qingyun Dou
  • Yun Xue
  • Xionggang LuEmail author
Original Paper
  • 38 Downloads

Abstract

The main challenge for aqueous asymmetric supercapacitors (ASCs) is the relatively low voltage, which significantly diminishes the energy density of the device. Here, cation-intercalated manganese oxide nanosheets Na0.55Mn2O4·1.5H2O (NaMnO) are synthesized via a facile molten salts method. We find that the electrode potential window for NaMnO nanosheets can be extended to 1.2 V using a low-cost and safe superconcentrated sodium perchlorate (NaClO4) “water-in-salt” (WIS) electrolyte. To construct the asymmetric supercapacitor, the as-prepared NaMnO nanosheets and activated carbon (AC) with a potential window of − 1.2–0 V are used as the positive and negative electrode, respectively. A high-voltage 2.4-V NaMnO//AC aqueous ASC in the concentrated NaClO4 WIS electrolyte is successfully assembled, which exhibited excellent rate performance (the highest power density of 24.0 kW kg−1) as well as good cycling stability (94.9% capacitance retention over 20,000 cycles at 5 A g−1). This low-cost WIS electrolyte provides new opportunities for developing high-voltage aqueous ASCs with high energy and high power densities.

Keywords

Cation-intercalated manganese oxide Asymmetric supercapacitor Aqueous electrolyte High voltage 

Notes

Funding information

This work was financially supported by the National Natural Science Foundation of China (51576164) and Natural Science Foundation of Gansu Province (18JR3RA159).

Supplementary material

11581_2019_3141_MOESM1_ESM.docx (2.3 mb)
ESM 1 (DOCX 2305 kb)

References

  1. 1.
    Rolison DR, Nazar LF (2011) Electrochemical energy storage to power the 21st century. MRS Bull 36:486–493CrossRefGoogle Scholar
  2. 2.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  3. 3.
    Liu J, Wang J, Xu C, Jiang H, Li C, Zhang L, Lin J, Shen ZX (2017) Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci 5:17003221Google Scholar
  4. 4.
    Li B, Gu P, Feng Y, Zhang G, Huang K, Xue H, Pang H (2017) Ultrathin nickel–cobalt phosphate 2D nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv Funct Mater 27:1605784CrossRefGoogle Scholar
  5. 5.
    Sun H, Mei L, Liang J, Zhao Z, Lee C, Fei H, Ding M, Lau J, Li M, Wang C, Xu X, Hao G, Papandrea B, Shakir I, Dunn B, Huang Y, Duan X (2017) Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science (New York, NY) 356:599–604CrossRefGoogle Scholar
  6. 6.
    Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950CrossRefGoogle Scholar
  7. 7.
    Dubey R, Guruviah V (2019) Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 25:1419–1445CrossRefGoogle Scholar
  8. 8.
    Li B, Zheng M, Xue H, Pang H (2016) High performance electrochemical capacitor materials focusing on nickel based materials. Inorg Chem Front 3:175–202CrossRefGoogle Scholar
  9. 9.
    Meng J, Wang Y, Xie X, Quan H (2019) High-performance asymmetric supercapacitor based on graphene-supported iron oxide and manganese sulfide. Ionics.  https://doi.org/10.1007/s11581-019-03061-x
  10. 10.
    Chang J, Jin M, Yao F, Kim TH, Le VT, Yue H, Gunes F, Li B, Ghosh A, Xie S, Lee YH (2013) Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv Funct Mater 23:5074–5083CrossRefGoogle Scholar
  11. 11.
    Chun S-E, Evanko B, Wang X, Vonlanthen D, Ji X, Stucky GD, Boettcher SW (2015) Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nat Commun 6:7818CrossRefGoogle Scholar
  12. 12.
    Mei J, Liao T, Kou L, Sun Z (2017) Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries. Adv Mater 29:1700176CrossRefGoogle Scholar
  13. 13.
    Peng L, Fang Z, Zhu Y, Yan C, Yu G (2018) Holey 2D nanomaterials for electrochemical energy storage. Adv Energy Mater 8:1702179CrossRefGoogle Scholar
  14. 14.
    Peng L, Xiong P, Ma L, Yuan Y, Zhu Y, Chen D, Luo X, Lu J, Amine K, Yu G (2017) Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat Commun 8:15139CrossRefGoogle Scholar
  15. 15.
    Zhao R, Zhang L, Wang C, Yin L (2017) Tetramethyl ammonium cation intercalated layered birnessite manganese dioxide for high-performance intercalation pseudocapacitor. J Power Sources 353:77–84CrossRefGoogle Scholar
  16. 16.
    Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y (2017) Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 27:1701264CrossRefGoogle Scholar
  17. 17.
    Zhai T, Sun S, Liu X, Liang C, Wang G, Xia H (2018) Achieving insertion-like capacity at ultrahigh rate via tunable surface pseudocapacitance. Adv Mater 30:1706640CrossRefGoogle Scholar
  18. 18.
    Gao P, Metz P, Hey T, Gong Y, Liu D, Edwards DD, Howe JY, Huang R, Misture ST (2017) The critical role of point defects in improving the specific capacitance of delta-MnO2 nanosheets. Nat Commun 8:14559CrossRefGoogle Scholar
  19. 19.
    Yu M, Lu Y, Zheng H, Lu X (2018) New insights into the operating voltage of aqueous supercapacitors. Chem Eur J 24:3639–3649CrossRefGoogle Scholar
  20. 20.
    Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539CrossRefGoogle Scholar
  21. 21.
    Yiğit D, Güllü M, Yumak T, Sınağ A (2014) Heterostructured poly(3,6-dithien-2-yl-9H-carbazol-9-yl acetic acid)/TiO2 nanoparticles composite redox-active materials as both anode and cathode for high-performance symmetric supercapacitor applications. J Mater Chem A 2:6512–6524CrossRefGoogle Scholar
  22. 22.
    Gao Q, Demarconnay L, Raymundopiñero E, Béguin F (2012) Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environ Sci 5:9611–9617CrossRefGoogle Scholar
  23. 23.
    Fic K, Lota G, Meller M, Frackowiak E (2012) Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ Sci 5:5842–5850CrossRefGoogle Scholar
  24. 24.
    Li B, Shi Y, Huang K, Zhao M, Qiu J, Xue H, Pang H (2018) Cobalt-doped nickel phosphite for high performance of electrochemical energy storage. Small 14:1703811CrossRefGoogle Scholar
  25. 25.
    Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K (2015) “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science (New York, NY) 350:938–943CrossRefGoogle Scholar
  26. 26.
    Suo L, Borodin O, Wang Y, Rong X, Sun W, Fan X, Xu S, Schroeder MA, Cresce AV, Wang F, Yang C, Hu Y-S, Xu K, Wang C (2017) “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv Energy Mater 7:1701189CrossRefGoogle Scholar
  27. 27.
    Dou Q, Lei S, Wang D-W, Zhang Q, Xiao D, Guo H, Wang A, Yang H, Li Y, Shi S, Yan X (2018) Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy Environ Sci 11:3212–3219CrossRefGoogle Scholar
  28. 28.
    Hasegawa G, Kanamori K, Kiyomura T, Kurata H, Abe T, Nakanishi K (2016) Hierarchically porous carbon monoliths comprising ordered mesoporous nanorod assemblies for high-voltage aqueous supercapacitors. Chem Mater 28:3944–3950CrossRefGoogle Scholar
  29. 29.
    Reber D, Kühnel R-S, Battaglia C (2017) High-voltage aqueous supercapacitors based on NaTFSI. Sustain Energy Fuels 1:2155–2161CrossRefGoogle Scholar
  30. 30.
    Bu X, Su L, Dou Q, Lei S, Yan X (2019) A low-cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor. J Mater Chem A 7:7541–7547CrossRefGoogle Scholar
  31. 31.
    Vadiyar MM, Kolekar SS, Deshpande NG, Chang J-Y, Kashale AA, Ghule AV (2017) Binder-free chemical synthesis of ZnFe2O4 thin films for asymmetric supercapacitor with improved performance. Ionics 23:741–749CrossRefGoogle Scholar
  32. 32.
    Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118:9233–9280CrossRefGoogle Scholar
  33. 33.
    Chaturvedi P, Sil A, Sharma Y (2016) Energy storage performance of hybrid aqueous supercapacitor based on nano-Li2MnSiO4 and activated carbon. Ionics 22:1719–1728CrossRefGoogle Scholar
  34. 34.
    Lee J, Kitchaev DA, Kwon D-H, Lee C-W, Papp JK, Liu Y-S, Lun Z, Clément RJ, Shi T, McCloskey BD, Guo J, Balasubramanian M, Ceder G (2018) Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 556:185–190CrossRefGoogle Scholar
  35. 35.
    Zhang K, Han X, Hu Z, Zhang X, Tao Z, Chen J (2015) Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem Soc Rev 44:699–728CrossRefGoogle Scholar
  36. 36.
    Wang J, Zhang G, Zhang P (2017) Layered birnessite-type MnO2 with surface pits for enhanced catalytic formaldehyde oxidation activity. J Mate Chem A 5:5719–5725CrossRefGoogle Scholar
  37. 37.
    Attias R, Hana O, Sharon D, Malka D, Hirshberg D, Luski S, Aurbach D (2017) Solid state synthesis of Li0.33MnO2 as positive electrode material for highly stable 2V aqueous hybrid supercapacitors. Electrochim Acta 254:155–164CrossRefGoogle Scholar
  38. 38.
    Peng X, Guo Y, Yin Q, Wu J, Zhao J, Wang C, Tao S, Chu W, Wu C, Xie Y (2017) Double-exchange effect in two-dimensional MnO2 nanomaterials. J Am Chem Soc 139:5242–5248CrossRefGoogle Scholar
  39. 39.
    Jabeen N, Xia Q, Savilov SV, Aldoshin SM, Yu Y, Xia H (2016) Enhanced pseudocapacitive performance of α-MnO2 by cation preinsertion. ACS Appl Mater Interfaces 8:33732–33740CrossRefGoogle Scholar
  40. 40.
    Jabeen N, Hussain A, Xia Q, Sun S, Zhu J, Xia H (2017) High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5 MnO2 nanosheet assembled nanowall arrays. Adv Mater 29:1700804CrossRefGoogle Scholar
  41. 41.
    Zuo W, Xie C, Xu P, Li Y, Liu J (2017) A novel phase-transformation activation process toward Ni–Mn–O nanoprism arrays for 2.4 V ultrahigh-voltage aqueous supercapacitors. Adv Mater 29:1703463CrossRefGoogle Scholar
  42. 42.
    Xiong T, Tan TL, Lu L, Lee WSV, Xue J (2018) Harmonizing energy and power density toward 2.7 V asymmetric aqueous supercapacitor. Adv Energy Mater 8:1702630CrossRefGoogle Scholar
  43. 43.
    Hu Z, Xiao X, Jin H, Li T, Chen M, Liang Z, Guo Z, Li J, Wan J, Huang L (2017) Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nat Commun 8:15630CrossRefGoogle Scholar
  44. 44.
    Athouël L, Moser F, Dugas R, Crosnier O, Bélanger D, Brousse T (2008) Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte. J Phys Chem C 112:7270–7277CrossRefGoogle Scholar
  45. 45.
    Yang X, Makita Y, Liu Z-h, Sakane K, Ooi K (2004) Structural characterization of self-assembled MnO2 nanosheets from birnessite manganese oxide single crystals. Chem Mater 16:5581–5588CrossRefGoogle Scholar
  46. 46.
    Zheng J, Tan G, Shan P, Liu T, Hu J, Feng Y, Yang L, Zhang M, Chen Z, Lin Y, Lu J, Neuefeind JC, Ren Y, Amine K, Wang L-W, Xu K, Pan F (2018) Understanding thermodynamic and kinetic contributions in expanding the stability window of aqueous electrolytes. Chem 4:2872–2882CrossRefGoogle Scholar
  47. 47.
    Wang B, Kang T, Xia N, Wen F, Chen L (2013) Synthesis and pseudocapacitive investigation of LiCrxMn2-xO4 cathode material for aqueous hybrid supercapacitor. Ionics 19:1527–1533CrossRefGoogle Scholar
  48. 48.
    Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151CrossRefGoogle Scholar
  49. 49.
    Lukatskaya MR, Kota S, Lin Z, Zhao M-Q, Shpigel N, Levi MD, Halim J, Taberna P-L, Barsoum MW, Simon P, Gogotsi Y (2017) Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy 6:17105CrossRefGoogle Scholar
  50. 50.
    Yang M, Zhong Y, Zhou X, Ren J, Su L, Wei J, Zhou Z (2014) Ultrasmall MnO@N-rich carbon nanosheets for high-power asymmetric supercapacitors. J Mater Chem A 2:12519–12525CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringLanzhou University of TechnologyLanzhouPeople’s Republic of China
  3. 3.Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid LubricationLanzhou Institute of Chemical Physics, Chinese Academy of SciencesLanzhouPeople’s Republic of China

Personalised recommendations