pp 1–9 | Cite as

Surfactant induced formation of flower-like V2O5 microspheres as cathode materials for rechargeable magnesium batteries

  • Ye Xiao
  • Mingguang Pan
  • Jianxin ZouEmail author
  • Rui Guo
  • Xiaoqin Zeng
  • Wenjiang Ding
Original Paper


Flower-like V2O5 microspheres were synthesized via a facile hydrothermal route with hexadecyl trimethyl ammonium bromide (HTAB) surfactant. However, the irregular V2O5 assemblies formed in the absence of HTAB. In particular, the cathode based on V2O5 microflowers can deliver superior discharge capacity, better cycling stability, and enhanced rate capability, compared with that based on irregular assemblies. Specially, it can deliver considerable discharge specific capacity (an initial capacity of 126.2 mAh g−1 at 50 mA g−1), good cycling stability (90.7 mAh g−1 after 80 cycles), and enhanced rate capability (above 60 mAh g−1 at 200 mA g−1). The improved electrochemical performance for V2O5 microflowers may be due to the increased specific surface area, interspace, and flexibility. The discharge-charge mechanism was investigated by X-ray diffraction and X-ray photoelectron spectroscopic results. This work indicates the important role of the surfactant on morphology control of cathode active materials for the promotion of electrochemical performance of rechargeable magnesium batteries.

Graphical abstract

Electrochemical performance of r-V2O5 and ir-V2O5


Flower-like V2O5 microspheres HTAB surfactant Rechargeable magnesium batteries Specific capacity Cycling stability 



This work is supported by National Natural Science Foundation of China (No. 51771112), “Shuguang” Scholar Project (16SG08) from Shanghai Education Commission, and China Postdoctoral Science Foundation (2017 M621476).

Supplementary material

11581_2019_3139_MOESM1_ESM.docx (2.4 mb)
ESM 1 (DOCX 2475 kb)


  1. 1.
    Armand M, Tarascon J-M (2008) Building better batteries. Nature 451(7179):652–657CrossRefGoogle Scholar
  2. 2.
    Yao J, Li Y, Massé RC, Uchaker E, Cao G (2018) Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Mater 11:205–259CrossRefGoogle Scholar
  3. 3.
    Massé RC, Uchaker E, Cao G (2015) Beyond Li-ion: electrode materials for sodium-and magnesium-ion batteries. Sci China Mater 58(9):715–766CrossRefGoogle Scholar
  4. 4.
    Aurbach D, Cohen Y, Moshkovich M (2001) The study of reversible magnesium deposition by in situ scanning tunneling microscopy. Electrochem Solid-State Lett 4(8):A113–A116CrossRefGoogle Scholar
  5. 5.
    Crowther O, West AC (2008) Effect of electrolyte composition on lithium dendrite growth. J Electrochem Soc 155(11):A806–A811CrossRefGoogle Scholar
  6. 6.
    Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407(6805):724–727CrossRefGoogle Scholar
  7. 7.
    Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN (2014) Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci 66:1–86CrossRefGoogle Scholar
  8. 8.
    Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6(8):2265–2279CrossRefGoogle Scholar
  9. 9.
    Aurbach D, Suresh GS, Levi E, Mitelman A, Mizrahi O, Chusid O, Brunelli M (2007) Progress in rechargeable magnesium battery technology. Adv Mater 19(23):4260–4267CrossRefGoogle Scholar
  10. 10.
    Jia Z, Hao J, Liu L, Yi W, Tao Q (2018) Vertically aligned α-MnO2 nanosheets on carbon nanotubes as cathodic materials for aqueous rechargeable magnesium ion battery. Ionics (4):1–9Google Scholar
  11. 11.
    Gershinsky G, Yoo HD, Gofer Y, Aurbach D (2013) Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 29(34):10964–10972CrossRefGoogle Scholar
  12. 12.
    Liu Y, Fan L-Z, Jiao L (2017) Graphene intercalated in graphene-like MoS2: a promising cathode for rechargeable Mg batteries. J Power Sources 340:104–110CrossRefGoogle Scholar
  13. 13.
    Mukherjee S, Ren Z, Singh G (2018) Beyond graphene anode materials for emerging metal ion batteries and supercapacitors. Nano-Micro Lett 10:70CrossRefGoogle Scholar
  14. 14.
    Wan LF, Perdue BR, Apblett CA, Prendergast D (2015) Mg desolvation and intercalation mechanism at the Mo6S8 chevrel phase surface. Chem Mater 27(17):5932–5940CrossRefGoogle Scholar
  15. 15.
    Zhou B, Shi H, Cao R, Zhang X, Jiang Z (2014) Theoretical study on the initial stage of a magnesium battery based on a V2O5 cathode. PCCP 16(34):18578–18585CrossRefGoogle Scholar
  16. 16.
    Sun X, Bonnick P, Duffort V, Liu M, Rong Z, Persson KA, Ceder G, Nazar LF (2016) A high capacity thiospinel cathode for Mg batteries. Energy Environ Sci 9(7):2273–2277CrossRefGoogle Scholar
  17. 17.
    Whittingham MS, Siu C, Ding J (2018) Can multielectron intercalation reactions be the basis of next generation batteries? Acc Chem Res 51(2):258–264CrossRefGoogle Scholar
  18. 18.
    Han T, Zhuo P, Lu W, Xiong F, Pei C, An Q, Mai L (2018) Vanadium-based cathode materials for rechargeable multivalent batteries: challenges and opportunities. Electrochem Energy Rev 1(2):169–199CrossRefGoogle Scholar
  19. 19.
    Du X, Huang G, Qin Y, Wang L (2015) Solvothermal synthesis of GO/V2O5 composites as a cathode material for rechargeable magnesium batteries. RSC Adv 5(93):76352–76355CrossRefGoogle Scholar
  20. 20.
    Cheng Y, Shao Y, Raju V, Ji X, Mehdi BL, Han KS, Engelhard MH, Li G, Browning ND, Mueller KT, Liu J (2016) Molecular storage of mg ions with vanadium oxide nanoclusters. Adv Funct Mater 26(20):3446–3453CrossRefGoogle Scholar
  21. 21.
    Arthur TS, Kato K, Germain J, Guo J, Glans PA, Liu YS, Holmes D, Fan X, Mizuno F (2015) Amorphous V2O5-P2O5 as high-voltage cathodes for magnesium batteries. Chem Commun 51:15657–15660CrossRefGoogle Scholar
  22. 22.
    Drosos C, Jia C, Mathew S, Palgrave RG, Moss B, Kafizas A, Vernardou D (2018) Aerosol-assisted chemical vapor deposition of V2O5 cathodes with high rate capabilities for magnesium-ion batteries. J Power Sources 384:355–359CrossRefGoogle Scholar
  23. 23.
    Sa N, Kinnibrugh TL, Wang H, Sai Gautam G, Chapman KW, Vaughey JT, Key B, Fister TT, Freeland JW, Proffit DL et al (2016) Structural evolution of reversible mg insertion into a bilayer structure of V2O5·nH2O Xerogel material. Chem Mater 28(9):2962–2969CrossRefGoogle Scholar
  24. 24.
    Mège S, Levieux Y, Ansart F, Savariault JM, Rousset A (2000) Electrochemical properties of a new V2O5 xerogel. J Appl Electrochem 30(6):657–664CrossRefGoogle Scholar
  25. 25.
    Wang HG, Ma DI, Huang Y, Zhang XB (2012) Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries. Chem Eur J 18(29):8987–8993CrossRefGoogle Scholar
  26. 26.
    Wu HB, Pan A, Hng HH, Lou XW (2013) Template-assisted formation of rattle-type V2O5 hollow microspheres with enhanced lithium storage properties. Adv Funct Mater 23:5669–5674CrossRefGoogle Scholar
  27. 27.
    Pan AQ, Wu HB, Zhang L, Lou XW (2013) Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ Sci 6:1476–1479CrossRefGoogle Scholar
  28. 28.
    Xiao F, Song X, Li Z, Zhang H, Zhang L, Lei G, Xiao Q, Hu Z, Ding Y (2017) Embedding of Mg-doped V2O5 nanoparticles in a carbon matrix to improve their electrochemical properties for high-energy rechargeable lithium batteries. J Mater Chem A 5:17432–17441CrossRefGoogle Scholar
  29. 29.
    Sun Z, Liao T, Kou L (2017) Strategies for designing metal oxide nanostructures. Sci China Mater 60(1):1–24CrossRefGoogle Scholar
  30. 30.
    Zeng M, Yin H, Yu K (2012) Synthesis of V2O5 nanostructures with various morphologies and their electrochemical and field-emission properties. Chem Eng J 188:64–70CrossRefGoogle Scholar
  31. 31.
    Mizrahi O, Amir N, Pollak E, Chusid O, Marks V, Gottlieb H, Larush L, Zinigrad E, Aurbach D (2008) Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries. J Electrochem Soc 155(2):A103–A109CrossRefGoogle Scholar
  32. 32.
    Mai L, An Q, Wei Q, Fei J, Zhang P, Xu X, Zhao Y, Yan M, Wen W, Xu L (2014) Nanoflakes-assembled three-dimensional hollow-porous V2O5 as lithium storage cathodes with high-rate capacity. Small 10(15):3032–3037CrossRefGoogle Scholar
  33. 33.
    Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57(4):603–619CrossRefGoogle Scholar
  34. 34.
    Asim N, Radiman S, Yarmo MA, Golriz BMS (2009) Vanadium pentoxide : synthesis and characterization of nanorod and nanoparticle V2O5 using CTAB micelle solution. Microporous Mesoporous Mater 120(3):397–401CrossRefGoogle Scholar
  35. 35.
    Wu Y, Xu M, Chen X, Yang S, Wu H, Pan J, Xiong X (2016) CTAB-assisted synthesis of novel ultrathin MoSe2 nanosheets perpendicular to graphene for the adsorption and photodegradation of organic dyes under visible light. Nanoscale 8:440–450CrossRefGoogle Scholar
  36. 36.
    Zheng H, Guo W, Li S, Yin R, Wu Q, Feng Q, Feng X, Ren N, Chang JS (2017) Surfactant (CTAB) assisted flower-like Bi2WO6 through hydrothermal method: unintentional bromide ion doping and photocatalytic activity. Catal Commun 88:68–72CrossRefGoogle Scholar
  37. 37.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRefGoogle Scholar
  38. 38.
    Xu X, Luo Y-Z, Mai L-Q, Zhao Y-L, An Q-Y, Xu L, Hu F, Zhang L, Zhang Q-J (2012) Topotactically synthesized ultralong LiV3O8 nanowire cathode materials for high-rate and long-life rechargeable lithium batteries. NPG Asia Mater 4(6):e20CrossRefGoogle Scholar
  39. 39.
    Koltypin M, Licht S, Vered RT, Nashits V, Aurbach D (2005) The study of K2FeO4 (Fe6+-super iron compound) as a cathode material for rechargeable lithium batteries. J Power Sources 146(1–2):723–726CrossRefGoogle Scholar
  40. 40.
    Ponrouch A, Taberna P-L, Simon P, Palacin MR (2012) On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction. Electrochim Acta 61:13–18CrossRefGoogle Scholar
  41. 41.
    Wang S, Lu Z, Wang D, Li C, Chen C, Yin Y (2011) Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. J Mater Chem 21(17):6365–6369CrossRefGoogle Scholar
  42. 42.
    Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@ sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed 50(26):5904–5908CrossRefGoogle Scholar
  43. 43.
    Pan A, Zhu T, Wu HB, Lou XW (2013) Template-free synthesis of hierarchical Vanadium-Glycolate hollow microspheres and their conversion to V2O5 with improved lithium storage capability. Chem Eur J 19(2):494–500CrossRefGoogle Scholar
  44. 44.
    Chen D, Mei X, Ji G, Lu M, Xie J, Lu J, Lee JY (2012) Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew Chem Int Ed 51(10):2409–2413CrossRefGoogle Scholar
  45. 45.
    Gu S, Wang H, Wu C, Bai Y, Li H, Wu F (2017) Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater 6:9–17CrossRefGoogle Scholar
  46. 46.
    Yao H, Li Y, Wee A (2003) Passivity behavior of melt-spun Mg–Y alloys. Electrochim Acta 48(28):4197–4204CrossRefGoogle Scholar
  47. 47.
    Liu Y, Li J, Zhang Q, Zhou N, Uchaker E, Gao G (2011) Porous nanostructured V2O5 film electrode with excellent Li-ion intercalation properties. Electrochem Commun 13(11):1276–1279CrossRefGoogle Scholar
  48. 48.
    Zhou L, Liu Q, Zhang Z, Zhang K, Xiong F, Tan S, An Q, Kang YM, Zhou Z, Mai L (2018) Interlayer-spacing-regulated VOPO4 nanosheets with fast kinetics for high-capacity and durable rechargeable magnesium batteries. Adv Mater 30(32):1801984CrossRefGoogle Scholar
  49. 49.
    Andrews JL, Mukherjee A, Yoo HD, Parija A, Marley PM, Fakra S, Prendergast D, Cabana J, Klie RF, Banerjee S (2018) Reversible Mg-Ion insertion in a metastable one-dimensional polymorph of V2O5. Chem 4(3):564–585CrossRefGoogle Scholar
  50. 50.
    Verrelli R, Black AP, Pattanathummasid C, Tchitchekova DS, Ponrouch A, Oró-Solé J, Frontera C, Bardé F, Rozier P, Palacín MR (2018) On the strange case of divalent ions intercalation in V2O5. J Power Sources 47:162–172CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ye Xiao
    • 1
  • Mingguang Pan
    • 1
  • Jianxin Zou
    • 1
    Email author
  • Rui Guo
    • 2
  • Xiaoqin Zeng
    • 1
  • Wenjiang Ding
    • 1
  1. 1.National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix CompositeShanghai Jiao Tong UniversityShanghaiChina
  2. 2.State Key Laboratory of Space Power TechnologyShanghai Institute of Space PowersourcesShanghaiChina

Personalised recommendations