, Volume 25, Issue 12, pp 5779–5786 | Cite as

Nanoarchitectured Co3O4/reduced graphene oxide as anode material for lithium-ion batteries with enhanced cycling stability

  • Zehua Chen
  • Yu Gao
  • Xingying Chen
  • Baolin Xing
  • Chuanxiang ZhangEmail author
  • Shuo Wang
  • Ting Liu
  • Yuan Liu
  • Zhanying Zhang
Original Paper


In this paper, we report on the synthesis of a nanoarchitectured Co3O4/reduced graphene oxide (Co3O4/rGO) composite by a one-pot method. The results of X-ray diffraction and HRTEM demonstrate that the pristine Co3O4 and Co3O4/rGO powder composites consist of a nanostructured powder with high crystallinity and the nanoarchitectured Co3O4 was completely coated by the rGO. As an anode for lithium-ion batteries, the nanocomposite exhibits improved electrochemical properties, with an initial capacity of 1298 mAh g−1 at a rate of 0.1 C, and excellent cyclability up to 200 cycles at a rate of 1 C compared with the pristine Co3O4. These results can be attributed to the higher specific surface area, lower interface transfer resistance, and fast reaction kinetics of the composite electrode.


Cobalt oxides Reduced graphene oxide Hydrothermal synthesis Lithium-ion batteries Nanoarchitectured 


Funding information

This work was financially supported by the National Natural Science Foundation of China (nos. U1361119, 61503124), the Key Scientific Research Project for Higher Education of Henan Province (no. 16A150009), the Natural Science Foundation of Henan Province (General Program) (nos. 162300410119, 162300410115), and the Innovative Research Team (in Science and Technology) in the University of Henan Province (no. 16IRTSTHN005).


  1. 1.
    Lu Y, Yu L, Lou XW (2018) Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4:972–996CrossRefGoogle Scholar
  2. 2.
    Tsuyoshi S, Yoshio U, Petr N (2013) Memory effect in a lithium-ion battery. Nat Mater 12:569–575CrossRefGoogle Scholar
  3. 3.
    Su Jong C, Namhyung K, Jiyoung M, Jaephil C, Minseong K (2017) One-to-one comparison of graphite-blended negative electrodes using silicon nanolayer-embedded graphite versus commercial benchmarking materials for high-energy lithium-ion batteries. Adv Energy Mater 7:1700071CrossRefGoogle Scholar
  4. 4.
    Yan CS, Zhu Y, Li YT, Fang ZW, Peng LL, Zhou X, Chen G, Yu GH (2018) Local built-in electric field enabled in carbon-doped Co3O4 nanocrystals for superior lithium-ion storage. Adv Funct Mater 28:1705951CrossRefGoogle Scholar
  5. 5.
    Lee K, Shin S, Degen T, Lee W, Yoon YS (2017) In situ analysis of SnO2/Fe2O3/RGO to unravel the structural collapse mechanism and enhanced electrical conductivity for lithium-ion batteries. Nano Energy 32:397–407CrossRefGoogle Scholar
  6. 6.
    Huang HJ, Zhang J, Jiang L, Zang ZG (2017) Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B. J Alloys Compd 718:112–115CrossRefGoogle Scholar
  7. 7.
    Li T, Li XH, Wang ZX, Guo HJ, Hu QY, Peng WJ (2016) Synthesis of nanoparticles-assembled Co3O4 microspheres as anodes for li-ion batteries by spray pyrolysis of CoCl2 solution. Electrochim Acta 209:456–463CrossRefGoogle Scholar
  8. 8.
    Sun Y, Huang FZ, Li SK, Shen YH, Xie AJ (2017) Novel porous starfish-like Co3O4@nitrogen-doped carbon as an advanced anode for lithium-ion batteries. Nano Res 10:3457–3467CrossRefGoogle Scholar
  9. 9.
    Shmatok YV, Globa NI, Kirillov SA (2017) Microwave-assisted citric acid aided synthesis and electrochemical performance of nanosized Co3O4. Electrochim Acta 245:88–98CrossRefGoogle Scholar
  10. 10.
    Wang JY, Yang NL, Tang HJ, Dong ZH, Jin Q, Yang M, Kisailus D, Zhao HJ, Tang ZY, Wang D (2013) Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew Chem 125:6545–6548CrossRefGoogle Scholar
  11. 11.
    Wang Q, Yu BW, Li X, Xing LL, Xue XY (2016) Core–shell Co3O4/ZnCo2O4 coconut-like hollow spheres with extremely high performance as anode materials for lithium-ion batteries. J Mater Chem A 4:425–433CrossRefGoogle Scholar
  12. 12.
    Li H-H, Zhou L, Zhang L-L, Fan C-Y, Fan H-H, Wu X-L, Sun H-Z, Zhang J-P (2017) Co3O4 nanospheres embedded in a nitrogen-doped carbon framework: an electrode with fast surface-controlled redox kinetics for lithium storage. ACS Energy Lett 2: 52−59CrossRefGoogle Scholar
  13. 13.
    Huang G, Zhang FF, Du XC, Qin YL, Yin DM, Wang LM (2015) Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9:1592–1599CrossRefGoogle Scholar
  14. 14.
    Wang W, Yang Y, Yang SJ, Guo ZP, Feng CQ, Tang XC (2015) Synthesis and electrochemical performance of ZnCo2O4 for lithium-ion battery application. Electrochim Acta 155:297–304CrossRefGoogle Scholar
  15. 15.
    Yan CS, Zhu Y, Li YT, Fang ZW, Peng LL, Zhou X, Chen G, Yu GH (2017) Local built-in electric field enabled in carbon-doped Co3O4 nanocrystals for superior lithium-ion storage. Adv Funct Mater 27:1705951Google Scholar
  16. 16.
    Song MJ, Kim IT, Kim YB, Kim J, Shin MW (2017) Metal–organic frameworks-derived porous carbon/Co3O4 composites for rechargeable lithium–oxygen batteries. Electrochim Acta 230:73–80CrossRefGoogle Scholar
  17. 17.
    Liu W, Yang HZ, Zhao L, Liu S, Wang HL, Chen SG (2016) Mesoporous flower-like Co3O4/C nanosheet composites and their performance evaluation as anodes for lithium ion batteries. Electrochim Acta 207:293–300CrossRefGoogle Scholar
  18. 18.
    Long HF, Zhang MY, Wang Q, Xing LL, Wang S, Xue XY (2017) Plasma-treated Co3O4/graphene nanocomposite as high performance anode of lithium-ion battery. J Alloys Compd 701:200–207CrossRefGoogle Scholar
  19. 19.
    Yao W, Zhang F, Qiu W, Xu Z, Xu J, Wen Y (2019) General synthesis of uniform three-dimensional metal oxides/reduced graphene oxide aerogels by a nucleation-inducing growth strategy for high-performance Lithium storage. ACS Sustain Chem Eng 7:847–857CrossRefGoogle Scholar
  20. 20.
    Yang ZW, Huang Y, Yao FL, Luo HL, Wan YZ (2018) Wrapping mesoporous Fe2O3 nanoparticles by reduced graphene oxide: enhancement of cycling stability and capacity of lithium ion batteries by mesoscopic engineering. Ceram Int 44:20656–20663CrossRefGoogle Scholar
  21. 21.
    Jadhav HS, Thorat GM, Kale BB, Seo JG (2017) Mesoporous Mn2O3/reduced graphene oxide (rGO) composite with enhanced electrochemical performance for Li-ion battery. Dalton Trans 46:9777–9783CrossRefGoogle Scholar
  22. 22.
    Ramasamy S, Nagamony P, Chinnuswamy V (2018) Self-assembled SnO2/reduced graphene oxide nanocomposites via Langmuir-Blodgett technique as anode materials for Li-ion batteries. Mater Lett 218:295–298CrossRefGoogle Scholar
  23. 23.
    Chen F, Yuan YF, Ye LW, Zhu M, Cai GC, Yin SM, Yang JL, Guo SY (2019) Co3O4 nanocrystalline-assembled mesoporous hollow polyhedron nanocage-in-nanocage as improved performance anode for lithium-ion batteries. Mater Lett 237:213–215CrossRefGoogle Scholar
  24. 24.
    Du HY, Yuan C, Huang KF, Wang WH, Zhang K, Geng BY (2017) A novel gelatin-guided mesoporous bowknot-like Co3O4 anode material for high-performance lithium-ion batteries. J Mater Chem A 5:5342–5350CrossRefGoogle Scholar
  25. 25.
    Wang GR, Zhu FL, Xia J, Wang L, Meng YS, Zhang Y (2017) Preparation of Co3O4/carbon derived from ionic liquid and its application in lithium-ion batteries. Electrochim Acta 257:138–145CrossRefGoogle Scholar
  26. 26.
    Mengping L, Maher FE-K, Jee YH, Matthew DK, Kristofer M, Haosen W, Zhijuan Z, Richard BK (2017) Embedding hollow Co3O4 nanoboxes into a three-dimensional macroporous graphene framework for high-performance energy storage devices. Nano Res 11:2836–2846Google Scholar
  27. 27.
    Wu Z-S, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H-M (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194CrossRefGoogle Scholar
  28. 28.
    Lin HL, Huang Q, Wang JZ, Jiang JZ, Liu F, Chen YW, Wang C, Lu DL, Han S (2016) Self-assembled graphene/polyaniline/Co3O4 ternary hybrid aerogels for supercapacitors. Electrochim Acta 191:444–451CrossRefGoogle Scholar
  29. 29.
    Wu S, Xu R, Lu M, Ge R, Iocozzia J, Han C, Jiang B, Lin Z (2015) Graphene-containing nanomaterials for lithium-ion batteries. Adv Energy Mater 5:1500400CrossRefGoogle Scholar
  30. 30.
    Tagusagawa C, Takagaki A, Iguchi A, Takanabe K, Kondo JN, Ebitani K, Hayashi S, Tatsumi T, Domen K (2010) Highly active mesoporous Nb-W oxide solid-acid catalyst. Angew Chem Int Ed 49:1128–1132CrossRefGoogle Scholar
  31. 31.
    Ma Q, Zeng X-X, Zhou CJ, Deng Q, Wang P-F, Zuo T-T, Zhang X-D, Yin Y-X, Wu XW, Chai L-Y, Guo Y-G (2018) Designing high-performance composite electrodes for vanadium redox flow batteries: experimental and computational investigation. ACS Appl Mater Interfaces 10:22381–22388CrossRefGoogle Scholar
  32. 32.
    Yang DX, Ren HY, Wu DP, Zhang WC, Lou XD, Wang DQ, Cao K, Gao ZY, Xu F, Jiang K (2019) Bi-functional nitrogen-doped carbon protective layer on three-dimensional RGO/SnO2 composites with enhanced electron transport and structural stability for high-performance lithium-ion batteries. J Colloid Interface Sci 542:81–90CrossRefGoogle Scholar
  33. 33.
    Jing PP, Wang PF, Liu MT, Gao WS, Cui YF, Wang Z, Pu YP (2019) Hierarchical porous stratified texture and enhanced lithium-ion storage performance of Co3O4 modified by nitrogen-doped reduced graphene oxides. J Alloys Compd 774:236–243CrossRefGoogle Scholar
  34. 34.
    Geng HB, Guo YY, Ding XG, Wang HW, Zhang YF, Wu XL, Jiang J, Zheng JW, Yang YG, Gu HW (2016) Porous cubes constructed by cobalt oxide nanocrystals with graphene sheets coating for enhanced lithium storage properties. Nanoscale 8:7688–7694CrossRefGoogle Scholar
  35. 35.
    Chen YY, Wang Y, Shen XP, Cai R, Yang HX, Xu KQ, Yuan AH, Ji ZY (2018) Cyanide-metal framework derived CoMoO4/Co3O4 hollow porous octahedrons as advanced anodes for high performance lithium ion batteries. J Mater Chem A 6:1048–1056CrossRefGoogle Scholar
  36. 36.
    Luo LL, Wu JS, Li QQ, Dravid VP, Poeppelmeier KR, Rao QL, Xu JM (2016) Reactions of graphene supported Co3O4 nanocubes with lithium and magnesium studied by in situ transmission electron microscopy. Nanotechnology 27:085402CrossRefGoogle Scholar
  37. 37.
    Du HY, Huang KF, Li M, Xia YY, Sun YX, Yu MK, Geng BY (2018) Gas template-assisted spray pyrolysis: a facile strategy to produce porous hollow Co3O4 with tunable porosity for high-performance lithium-ion battery anode materials. Nano Res 11:1490–1499CrossRefGoogle Scholar
  38. 38.
    Yan CS, Lv C, Zhu Y, Chen G, Sun JX, Yu GH (2017) Engineering 2D nanofluidic li-ion transport channels for superior electrochemical energy storage. Adv Mater 29:1703909CrossRefGoogle Scholar
  39. 39.
    Hou CX, Hou Y, Fan YQ, Zhai YJ, Wang Y, Sun ZY, Fan RH, Dang F, Wang J (2018) Oxygen vacancy derived local build-in electric field in mesoporous hollow Co3O4 microspheres promotes high-performance li-ion batteries. J Mater Chem A 6:6967–6976CrossRefGoogle Scholar
  40. 40.
    Sun J, Lv CX, Lv F, Chen S, Li DH, Guo Z, Han W, Yang DJ, Guo SJ (2017) Tuning the shell number of multishelled metal oxide hollow fibers for optimized lithium-ion storage. ACS Nano 11:6186–6193CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zehua Chen
    • 1
    • 2
  • Yu Gao
    • 1
  • Xingying Chen
    • 3
  • Baolin Xing
    • 1
  • Chuanxiang Zhang
    • 1
    Email author
  • Shuo Wang
    • 2
  • Ting Liu
    • 2
  • Yuan Liu
    • 2
  • Zhanying Zhang
    • 4
  1. 1.College of Chemistry and Chemical EngineeringHenan Polytechnic UniversityJiaozuoPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China
  3. 3.Medical CollegeHenan Polytechnic UniversityJiaozuoPeople’s Republic of China
  4. 4.College of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuoPeople’s Republic of China

Personalised recommendations