pp 1–11 | Cite as

Synthesis and physical properties of new low-viscosity sulfonium ionic liquids

  • Zheng Yue
  • Hamza Dunya
  • Xinyi Mei
  • Christopher McGarry
  • Braja K. MandalEmail author
Original Paper


Several new sulfonium ionic liquids (ILs) with dicyanamide ([DCA]) and bis(trifluoromethylsulfonyl)imide ([TFSI]) counter anions have been synthesized. Their viscosity and ionic conductivity values were determined. The ILs with [DCA] were previously prepared by the metathesis reaction involving silver dicyanamide (AgDCA). We report here a very convenient and much less expensive method using an ion-exchange resin. The structures of these ILs have been confirmed by 1H-NMR, 13C-NMR, and elemental analysis. Some of these sulfonium ILs displayed low viscosity (< 30 cP) and high ionic conductivity (> 10 mS cm−1). A concluding remark on structure-property relationship has also been drawn involving alicyclic and cyclic sulfonium cations vs. [DCA] and [TFSI] anions.


Ionic liquids Ion-exchange resins Sulfonium cation TFSI anion DCA anion Li-ion battery electrolytes 



  1. 1.
    Xiang J, Wu F, Chen R, Li L, Yu H (2013) High voltage and safe electrolytes based on ionic liquid and sulfone for lithium-ion batteries. J Power Sources 233:115–120. CrossRefGoogle Scholar
  2. 2.
    Guerfi A, Dontigny M, Charest P, Petitclerc M, Lagacé M, Vijh A, Zaghib K (2010) Improved electrolytes for Li-ion batteries: mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance. J Power Sources 195:845–852. CrossRefGoogle Scholar
  3. 3.
    Jin Y, Fang S, Chai M, Yang L, Tachibana K, Hirano SI (2013) Properties and application of ether-functionalized trialkylimidazolium ionic liquid electrolytes for lithium battery. J Power Sources 226:210–218. CrossRefGoogle Scholar
  4. 4.
    Reale P, Fernicola A, Scrosati B (2009) Compatibility of the Py24TFSI–LiTFSI ionic liquid solution with Li4Ti5O12 and LiFePO4 lithium ion battery electrodes. J Power Sources 194:182–189. CrossRefGoogle Scholar
  5. 5.
    Abouimrane A, Belharouak I, Amine K (2009) Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochem Commun 11:1073–1076. CrossRefGoogle Scholar
  6. 6.
    Shao N, Sun X-G, Dai S, Jiang D (2012) Oxidation potentials of functionalized sulfone solvents for high-voltage Li-ion batteries: a computational study. J Phys Chem B 116:3235–3238. CrossRefGoogle Scholar
  7. 7.
    Li M, Liao Y, Liu Q, Xu J, Sun P, Shi H, Li W (2018) Application of the imidazolium ionic liquid based nano-particle decorated gel polymer electrolyte for high safety lithium ion battery. Electrochim Acta 284:188–201. CrossRefGoogle Scholar
  8. 8.
    Wu F, Zhu Q, Chen R, Chen N, Chen Y, Li L (2015) Ionic liquid electrolytes with protective lithium difluoro(oxalate)borate for high voltage lithium-ion batteries. Nano Energy 13:546–553. CrossRefGoogle Scholar
  9. 9.
    Lewandowski A, Świderska-Mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. J Power Sources 194:601–609. CrossRefGoogle Scholar
  10. 10.
    Wolff C, Jeong S, Paillard E, Balducci A, Passerini S (2015) High power, solvent-free electrochemical double layer capacitors based on pyrrolidinium dicyanamide ionic liquids. J Power Sources 293:65–70. CrossRefGoogle Scholar
  11. 11.
    Mousavi MPS, Wilson BE, Kashefolgheta S, Anderson EL, He S, Bühlmann P, Stein A (2016) Ionic liquids as electrolytes for electrochemical double-layer capacitors: structures that optimize specific energy. ACS Appl Mater Interfaces 8:3396–3406. CrossRefGoogle Scholar
  12. 12.
    Karu K, Ruzanov A, Ers H, Ivaništšev V, Lage-Estebanez I, García de la Vega J (2016) Predictions of physicochemical properties of ionic liquids with DFT. Computation 4:25. CrossRefGoogle Scholar
  13. 13.
    Fletcher SI, Sillars FB, Hudson NE, Hall PJ (2010) Physical properties of selected ionic liquids for use as electrolytes and other industrial applications. J Chem Eng Data 55:778–782. CrossRefGoogle Scholar
  14. 14.
    Han H-B, Nie J, Liu K, Li WK, Feng WF, Armand M, Matsumoto H, Zhou ZB (2010) Ionic liquids and plastic crystals based on tertiary sulfonium and bis(fluorosulfonyl)imide. Electrochim Acta 55:1221–1226. CrossRefGoogle Scholar
  15. 15.
    Turner DR, Chesman ASR, Murray KS, Deacon GB, Batten SR (2011) The chemistry and complexes of small cyano anions. Chem Commun 47:10189. CrossRefGoogle Scholar
  16. 16.
    Li Y-S, Sun I-W, Chang J-K, Su CJ, Lee MT (2012) Doped butylmethylpyrrolidinium–dicyanamide ionic liquid as an electrolyte for MnO2 supercapacitors. J Mater Chem 22:6274. CrossRefGoogle Scholar
  17. 17.
    Chang JK, Lee MT, Tsai WT, Deng MJ, Sun IW (2009) X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy studies on reversible insertion/desertion of dicyanamide anions into/from manganese oxide in ionic liquid. Chem Mater 21:2688–2695. CrossRefGoogle Scholar
  18. 18.
    Lee MT, Li YS, Sun IW, Chang JK (2014) Pseudocapacitive behavior of manganese oxide in lithium-ion-doped butylmethylpyrrolidinium-dicyanamide ionic liquid investigated using in situ X-ray absorption spectroscopy. J Power Sources 246:269–276. CrossRefGoogle Scholar
  19. 19.
    Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539. CrossRefGoogle Scholar
  20. 20.
    Chang J-K, Lee M-T, Cheng C-W, Tsai WT, Deng MJ, Hsieh YC, Sun IW (2009) Pseudocapacitive behavior of Mn oxide in aprotic 1-ethyl-3-methylimidazolium–dicyanamide ionic liquid. J Mater Chem 19:3732. CrossRefGoogle Scholar
  21. 21.
    Gerhard D, Alpaslan SC, Gores HJ, Uerdingen M, Wasserscheid P (2005) Trialkylsulfonium dicyanamides - a new family of ionic liquids with very low viscosities. Chem Commun:5080–5082.
  22. 22.
    Pandian S, Raju SG, Hariharan KS, Kolake SM, Park DH, Lee MJ (2015) Functionalized ionic liquids as electrolytes for lithium-ion batteries. J Power Sources 286:204–209. CrossRefGoogle Scholar
  23. 23.
    Zhang Q, Liu S, Li Z, Li J, Chen Z, Wang R, Lu L, Deng Y (2009) Novel cyclic sulfonium-based ionic liquids: synthesis, characterization, and physicochemical properties. Chem Eur J 15:765–778. CrossRefGoogle Scholar
  24. 24.
    Zhao D, Fei Z, Ang W, Dyson P (2007) Sulfonium-based ionic liquids incorporating the allyl functionality. Int J Mol Sci 8:304–315. CrossRefGoogle Scholar
  25. 25.
    Tsunashima K, Kodama S, Sugiya M, Kunugi Y (2010) Physical and electrochemical properties of room-temperature dicyanamide ionic liquids based on quaternary phosphonium cations. Electrochim Acta 56:762–766. CrossRefGoogle Scholar
  26. 26.
    Murray SM, Zimlich TK, Mirjafari A, O’Brien RA, Davis JH Jr, West KN (2013) Thermophysical properties of imidazolium-based lipidic ionic liquids. J Chem Eng Data 58:1516–1522. CrossRefGoogle Scholar
  27. 27.
    Wang H, Yoshio M (2010) Effect of water contamination in the organic electrolyte on the performance of activated carbon/graphite capacitors. J Power Sources 195:389–392. CrossRefGoogle Scholar
  28. 28.
    Yang L, Furczon MM, Xiao A, Lucht BL, Zhang Z, Abraham DP (2010) Effect of impurities and moisture on lithium bisoxalatoborate (LiBOB) electrolyte performance in lithium-ion cells. J Power Sources 195:1698–1705. CrossRefGoogle Scholar
  29. 29.
    Randström S, Montanino M, Appetecchi GB, Lagergren C, Moreno A, Passerini S (2008) Effect of water and oxygen traces on the cathodic stability of N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Electrochim Acta 53:6397–6401. CrossRefGoogle Scholar
  30. 30.
    Liu Q, Janssen MHA, Van Rantwijk F, Sheldon RA (2005) Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem 7:39–42. CrossRefGoogle Scholar
  31. 31.
    Srour H, Rouault H, Santini CC, Chauvin Y (2013) A silver and water free metathesis reaction: a route to ionic liquids. Green Chem 15:1341. CrossRefGoogle Scholar
  32. 32.
    Mei X, Yue Z, Tufts J, Dunya H, Mandal BK (2018) Synthesis of new fluorine-containing room temperature ionic liquids and their physical and electrochemical properties. J Fluor Chem 212:26–37. CrossRefGoogle Scholar
  33. 33.
    Rennie AJR, Martins VL, Torresi RM, Hall PJ (2015) Ionic liquids containing Sulfonium cations as electrolytes for electrochemical double layer capacitors. J Phys Chem C 119:23865–23874. CrossRefGoogle Scholar
  34. 34.
    Coadou E, Goodrich P, Neale AR, Timperman L, Hardacre C, Jacquemin J, Anouti M (2016) Synthesis and thermophysical properties of ether-functionalized sulfonium ionic liquids as potential electrolytes for electrochemical applications. ChemPhysChem 17:3992–4002. CrossRefGoogle Scholar
  35. 35.
    Yue Z, Dunya H, Aryal S, Segre CU, Mandal B (2018) Synthesis and electrochemical properties of partially fluorinated ether solvents for lithium sulfur battery electrolytes. J Power Sources 401:271–277. CrossRefGoogle Scholar
  36. 36.
    Dinarès I, Garcia de Miguel C, Ibáñez A, Mesquida N, Alcalde E (2009) Imidazolium ionic liquids: a simple anion exchange protocol. Green Chem 11:1507. CrossRefGoogle Scholar
  37. 37.
    MacFarlane DR, Golding J, Forsyth S et al (2001) Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chem Commun:1430–1431.
  38. 38.
    MacFarlane DR, Forsyth SA, Golding J, Deacon GB (2002) Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion. Green Chem 4:444–448. CrossRefGoogle Scholar
  39. 39.
    Yoshida Y, Baba O, Larriba C, Saito G (2007) Imidazolium-based ionic liquids formed with dicyanamide anion: influence of cationic structure on ionic conductivity. J Phys Chem B 111:12204–12210. CrossRefGoogle Scholar
  40. 40.
    Yoshida Y, Baba O, Saito G (2007) Ionic liquids based on dicyanamide anion: influence of structural variations in cationic structures on ionic conductivity †. J Phys Chem B 111:4742–4749. CrossRefGoogle Scholar
  41. 41.
    Marcilla A, Ruiz F, García AN (1995) Liquid-liquid-solid equilibria of the quaternary system water-ethanol-acetone-sodium chloride at 25 °C. Fluid Phase Equilib 112:273–289. CrossRefGoogle Scholar
  42. 42.
    Solgy M, Taghizadeh M, Ghoddocynejad D (2015) Adsorption of uranium(VI) from sulphate solutions using Amberlite IRA-402 resin: equilibrium, kinetics and thermodynamics study. Ann Nucl Energy 75:132–138. CrossRefGoogle Scholar
  43. 43.
    Levchuk I, Rueda Márquez JJ, Sillanpää M (2018) Removal of natural organic matter (NOM) from water by ion exchange – a review. Chemosphere 192:90–104. CrossRefGoogle Scholar
  44. 44.
    Jaeger F, Matar OK, Müller EA (2018) Bulk viscosity of molecular fluids. J Chem Phys 148:174504. CrossRefGoogle Scholar
  45. 45.
    Zhang J, Fang S, Qu L, Jin Y, Yang L, Hirano SI (2014) Synthesis, characterization, and properties of ether-functionalized 1,3-dialkylimidazolium ionic liquids. Ind Eng Chem Res 53:16633–16643. CrossRefGoogle Scholar
  46. 46.
    Fang S, Jin Y, Yang L, Hirano SI, Tachibana K, Katayama S (2011) Functionalized ionic liquids based on quaternary ammonium cations with three or four ether groups as new electrolytes for lithium battery. Electrochim Acta 56:4663–4671. CrossRefGoogle Scholar
  47. 47.
    Izgorodina EI, Bernard UL, Macfarlane DR (2009) Ion-pair binding energies of ionic liquids : can DFT compete with ab initio-based methods ? 7064–7072Google Scholar
  48. 48.
    Grimme S, Hujo W, Kirchner B (2012) Performance of dispersion-corrected density functional theory for the interactions in ionic liquids. Phys Chem Chem Phys 14:4875. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zheng Yue
    • 1
  • Hamza Dunya
    • 1
  • Xinyi Mei
    • 2
  • Christopher McGarry
    • 1
  • Braja K. Mandal
    • 1
    Email author
  1. 1.Department of ChemistryIllinois Institute of TechnologyChicagoUSA
  2. 2.National Academy of Economic SecurityBeijing Jiaotong UniversityBeijingChina

Personalised recommendations