Advertisement

Ionics

, Volume 25, Issue 12, pp 5759–5767 | Cite as

Facile synthesis of Ni-NiO/C anode with enhanced lithium storage and long cycling life

  • Qianru Hu
  • Fuliang ZhuEmail author
  • Ruinian Li
  • Mengqi Du
  • Yanshuang Meng
  • Yue ZhangEmail author
Original Paper
  • 107 Downloads

Abstract

A novel Ni-NiO embedded amorphous carbon (Ni-NiO/C) composite was synthesized by simple carbothermal reduction followed by low-temperature oxidation. Benefiting from the embedded metallic nickel, the Ni-NiO/C composite showed improved electrical conductivity and reduced electrochemical polarization when used as anode material of lithium-ion batteries. The Ni-NiO/C electrode can be reversibly discharged and charged for more than 1000 cycles at a high current density of 5 A g−1, maintaining a discharge/charge capacity of ~ 335.9/335.8 mAh g−1. When the current density returns from 5 to 0.25 A g−1, the composite still exhibits a high reversible capacity of 751.9/747.6 mAh g−1 at the 120th cycle. This work provides guidance to understand the impact of metallic particles on lithium storage.

Keywords

Lithium-ion batteries Anode Ni-NiO/C composite Electrical conductivity Electrochemical polarization 

Notes

Funding

The project was supported by the National Natural Science Foundation of China (Grant Nos. 51364024 and 51404124). The authors are grateful to the support of Faculty Research Seed Grants Program of Georgia Southern University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264.  https://doi.org/10.1016/j.mattod.2014.10.040 CrossRefGoogle Scholar
  2. 2.
    Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 1(4):16013.  https://doi.org/10.1038/natrevmats.2016.13 CrossRefGoogle Scholar
  3. 3.
    Zhu C, Fu Y, Yu Y (2019) Designed nanoarchitectures by electrostatic spray deposition for energy storage. Adv Mater 31(1):e1803408.  https://doi.org/10.1002/adma.201803408 CrossRefPubMedGoogle Scholar
  4. 4.
    Xing Y, Shen T, Guo T, Wang X, Xia X, Gu C, Tu J (2018) A novel durable double-conductive core-shell structure applying to the synthesis of silicon anode for lithium ion batteries. J Power Sources 384:207–213.  https://doi.org/10.1016/j.jpowsour.2018.02.051 CrossRefGoogle Scholar
  5. 5.
    Lei C, Han F, Li D, Li WC, Sun Q, Zhang XQ, Lu AH (2013) Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes. Nanoscale 5(3):1168–1175.  https://doi.org/10.1039/c2nr33043a CrossRefPubMedGoogle Scholar
  6. 6.
    Hwang K, Sohn H, Yoon S (2018) Mesostructured niobium-doped titanium oxide-carbon (Nb-TiO2-C) composite as an anode for high-performance lithium-ion batteries. J Power Sources 378:225–234.  https://doi.org/10.1016/j.jpowsour.2017.12.055 CrossRefGoogle Scholar
  7. 7.
    Wang Z, Xiong X, Qie L, Huang Y (2013) High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole. Electrochim Acta 106:320–326.  https://doi.org/10.1016/j.electacta.2013.05.088 CrossRefGoogle Scholar
  8. 8.
    Zhou Y, Yan D, Xu H, Feng J, Jiang X, Yue J, Yang J, Qian Y (2015) Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 12:528–537.  https://doi.org/10.1016/j.nanoen.2015.01.019 CrossRefGoogle Scholar
  9. 9.
    Zhao X, Xia D, Zheng K (2012) Fe3O4/Fe/carbon composite and its application as anode material for lithium-ion batteries. ACS Appl Mater Interfaces 4(3):1350–1356.  https://doi.org/10.1021/am201617j CrossRefPubMedGoogle Scholar
  10. 10.
    Li T, Ni S, Lv X (2012) Preparation of NiO–Ni/natural graphite composite anode for lithium ion batteries. J Alloys Compd 553:167–171.  https://doi.org/10.1016/j.jallcom.2012.11.136 CrossRefGoogle Scholar
  11. 11.
    Zhao Y, Li X, Yan B, Xiong D, Li D, Lawes S, Sun X (2016) Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater 6(8):1502175.  https://doi.org/10.1002/aenm.201502175 CrossRefGoogle Scholar
  12. 12.
    Sun X, Si W, Liu X (2014) Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy 9:168–175.  https://doi.org/10.1016/j.nanoen.2014.06.022 CrossRefGoogle Scholar
  13. 13.
    Poizot P, Laruelle S, Grugeon S (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499CrossRefGoogle Scholar
  14. 14.
    Lee DH, Kim JC, Shim HW, Kim DW (2014) Highly reversible Li storage in hybrid NiO/Ni/graphene nanocomposites prepared by an electrical wire explosion process. ACS Appl Mater Interfaces 6(1):137–142.  https://doi.org/10.1021/am403643x CrossRefPubMedGoogle Scholar
  15. 15.
    Li X, Dhanabalan A, Bechtold K, Wang C (2010) Binder-free porous core–shell structured Ni/NiO configuration for application of high performance lithium ion batteries. Electrochem Commun 12(9):1222–1225.  https://doi.org/10.1016/j.elecom.2010.06.024 CrossRefGoogle Scholar
  16. 16.
    Wang G, Leng X, Han S, Shao Y, Wei S, Liu Y, Lian J, Jiang Q (2016) How to improve the stability and rate performance of lithium-ion batteries with transition metal oxide anodes. J Mater Res 32(01):16–36.  https://doi.org/10.1557/jmr.2016.330 CrossRefGoogle Scholar
  17. 17.
    Mondal AK, Su D, Wang Y, Chen S, Liu Q, Wang G (2014) Microwave hydrothermal synthesis of urchin-like NiO nanospheres as electrode materials for lithium-ion batteries and supercapacitors with enhanced electrochemical performances. J Alloys Compd 582:522–527.  https://doi.org/10.1016/j.jallcom.2013.08.085 CrossRefGoogle Scholar
  18. 18.
    Wu H, Xu M, Wu H, Xu J, Wang Y, Peng Z, Zheng G (2012) Aligned NiO nanoflake arrays grown on copper as high capacity lithium-ion battery anodes. J Mater Chem 22(37):19821–19825.  https://doi.org/10.1039/c2jm34496c CrossRefGoogle Scholar
  19. 19.
    Hwan Oh S, Park JS, Su Jo M, Kang YC, Cho JS (2018) Design and synthesis of tube-in-tube structured NiO nanobelts with superior electrochemical properties for lithium-ion storage. Chem Eng J 347:889–899.  https://doi.org/10.1016/j.cej.2018.04.156 CrossRefGoogle Scholar
  20. 20.
    Wu HB, Chen JS, Hng HH, Lou XW (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4(8):2526–2542.  https://doi.org/10.1039/c2nr11966h CrossRefPubMedGoogle Scholar
  21. 21.
    Chen J, Wang Z, Mu J, Ai B, Zhang T, Ge W, Zhang L (2018) Enhanced lithium storage capability enabled by metal nickel dotted NiO–graphene composites. J Mater Sci 54(2):1475–1487.  https://doi.org/10.1007/s10853-018-2882-3 CrossRefGoogle Scholar
  22. 22.
    Ni S, Li T, Lv X, Yang X, Zhang L (2013) Designed constitution of NiO/Ni nanostructured electrode for high performance lithium ion battery. Electrochim Acta 91:267–274.  https://doi.org/10.1016/j.electacta.2012.12.113 CrossRefGoogle Scholar
  23. 23.
    Ji L, Lin Z, Alcoutlabi M, Toprakci O, Yao Y, Xu G, Li S, Zhang X (2012) Electrospun carbon nanofibers decorated with various amounts of electrochemically-inert nickel nanoparticles for use as high-performance energy storage materials. RSC Adv 2(1):192–198.  https://doi.org/10.1039/c1ra00676b CrossRefGoogle Scholar
  24. 24.
    Mai YJ, Tu JP, Xia XH, Gu CD, Wang XL (2011) Co-doped NiO nanoflake arrays toward superior anode materials for lithium ion batteries. J Power Sources 196(15):6388–6393.  https://doi.org/10.1016/j.jpowsour.2011.03.089 CrossRefGoogle Scholar
  25. 25.
    Wang J, Wang L, Zhang S, Liang S, Liang X, Huang H, Zhou W, Guo J (2018) Facile synthesis of iron-doped SnO2 /reduced graphene oxide composite as high-performance anode material for lithium-ion batteries. J Alloys Compd 748:1013–1021.  https://doi.org/10.1016/j.jallcom.2018.03.155 CrossRefGoogle Scholar
  26. 26.
    Meng X, Deng D (2019) Bio-inspired synthesis of 3-D network of NiO-Ni nanowires on carbonized eggshell membrane for lithium-ion batteries. Chem Eng Sci 194:134–141.  https://doi.org/10.1016/j.ces.2018.06.038 CrossRefGoogle Scholar
  27. 27.
    Jiao S, Lian G, Jing L, Xu Z, Wang Q, Cui D, Wong C-P (2018) Sn-doped rutile TiO2 hollow nanocrystals with enhanced lithium-ion batteries performance. ACS Omega 3(1):1329–1337.  https://doi.org/10.1021/acsomega.7b01340 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mai YJ, Xia XH, Chen R, Gu CD, Wang XL, Tu JP (2012) Self-supported nickel-coated NiO arrays for lithium-ion batteries with enhanced capacity and rate capability. Electrochim Acta 67:73–78.  https://doi.org/10.1016/j.electacta.2012.02.013 CrossRefGoogle Scholar
  29. 29.
    Yue J, Zhao X, Xia D (2012) Electrochemical lithium storage of C/Co composite as an anode material for lithium ion batteries. Electrochem Commun 18:44–47.  https://doi.org/10.1016/j.elecom.2012.02.001 CrossRefGoogle Scholar
  30. 30.
    Yang CC, Zhang DM, Du L, Jiang Q (2018) Hollow Ni–NiO nanoparticles embedded in porous carbon nanosheets as a hybrid anode for sodium-ion batteries with an ultra-long cycle life. J Mater Chem A 6(26):12663–12671.  https://doi.org/10.1039/c8ta03692f CrossRefGoogle Scholar
  31. 31.
    Zhang D, Li G, Yu M, Fan J, Li B, Li L (2018) Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries. J Power Sources 384:34–41.  https://doi.org/10.1016/j.jpowsour.2018.02.071 CrossRefGoogle Scholar
  32. 32.
    Qian J, Guo X, Wang T, Liu P, Zhang H, Gao D (2019) Bifunctional porous co-doped NiO nanoflowers electrocatalysts for rechargeable zinc-air batteries. Appl Catal B Environ 250:71–77.  https://doi.org/10.1016/j.apcatb.2019.03.021 CrossRefGoogle Scholar
  33. 33.
    Zhou GM, Wang DW, Yin LC (2012) Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6(4):3214–3223.  https://doi.org/10.1021/nn300098m CrossRefPubMedGoogle Scholar
  34. 34.
    Xing L, Dong Y, Hu F, Wu X, Umar A (2018) Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors. Dalton Trans 47(16):5687–5694.  https://doi.org/10.1039/c8dt00750k CrossRefPubMedGoogle Scholar
  35. 35.
    Fu G, Yan X, Chen Y, Xu L, Sun D, Lee JM, Tang Y (2018) Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles. Adv Mater 30(5):1704609.  https://doi.org/10.1002/adma.201704609 CrossRefGoogle Scholar
  36. 36.
    Ni Y, Yin Y, Wu P, Zhang H, Cai C (2014) Nitrogen/carbon atomic ratio-dependent performances of nitrogen-doped carbon-coated metal oxide nanocrystals for anodes in lithium-ion batteries. ACS Appl Mater Interfaces 6(10):7346–7355.  https://doi.org/10.1021/am500737w CrossRefPubMedGoogle Scholar
  37. 37.
    Liang J, Wei W, Zhong D, Yang Q, Li L, Guo L (2012) One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries. ACS Appl Mater Interfaces 4(1):454–459.  https://doi.org/10.1021/am201541s CrossRefPubMedGoogle Scholar
  38. 38.
    Sun X, Wang X, Feng N, Qiao L, Li X, He D (2013) A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries. J Anal Appl Pyrolysis 100(3):181–185.  https://doi.org/10.1016/j.jaap.2012.12.016 CrossRefGoogle Scholar
  39. 39.
    Liu X, Wu Y, Li X, Yu J, Sun Y (2018) FeS@onion-like carbon nanocapsules embedded in amorphous carbon for the lithium ion batteries with excellent cycling stability. Ceram Int 44(12):13654–13661.  https://doi.org/10.1016/j.ceramint.2018.04.203 CrossRefGoogle Scholar
  40. 40.
    Huang X, Diao G, Li S, Balogun M-S, Li N, Huang Y, Liu Z-Q, Tong Y (2018) Enhanced lithium storage performance of porous exfoliated carbon fibers via anchored nickel nanoparticles. RSC Adv 8(31):17056–17059.  https://doi.org/10.1039/c8ra02529k CrossRefGoogle Scholar
  41. 41.
    Xia Y, Zhang W, Xiao Z, Huang H, Zeng H, Chen X, Chen F, Gan Y, Tao X (2012) Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries. J Mater Chem 22(18):9209–9215.  https://doi.org/10.1039/c2jm16935e CrossRefGoogle Scholar
  42. 42.
    Sun X, Yan C, Chen Y, Si W, Deng J, Oswald S, Liu L, Schmidt OG (2014) Three-dimensionally “curved” NiO nanomembranes as ultrahigh rate capability anodes for Li-ion batteries with long cycle lifetimes. Adv Energy Mater 4(4):1300912.  https://doi.org/10.1002/aenm.201300912 CrossRefGoogle Scholar
  43. 43.
    Mironova-Ulmane N, Kuzmin A, Sildos I, Pärs M (2011) Polarisation dependent Raman study of single-crystal nickel oxide. Open Physics 9(4):1096–1099.  https://doi.org/10.2478/s11534-010-0130-9 CrossRefGoogle Scholar
  44. 44.
    Luo Y, Weng M, Zheng J, Zhang Q, Xu B, Song S, Shen Y, Lin Y, Pan F, Nan C (2018) The origin of cycling enhanced capacity of Ni/NiO species confined on nitrogen doped carbon nanotubes for lithium-ion battery anodes. J Alloys Compd 750:17–22.  https://doi.org/10.1016/j.jallcom.2018.03.269 CrossRefGoogle Scholar
  45. 45.
    Jiang J, Zhu J, Feng Y, Liu J, Huang X (2012) A novel evolution strategy to fabricate a 3D hierarchical interconnected core-shell Ni/MnO2 hybrid for Li-ion batteries. Chem Commun (Camb) 48(60):7471–7473.  https://doi.org/10.1039/c2cc33452f CrossRefGoogle Scholar
  46. 46.
    Jia Z, Tan Y, Sun J, Wang Y, Cui Z, Guo X (2018) Facile synthesis of N-doped carbon-coated nickel oxide nanoparticles embedded in N-doped carbon sheets for reversible lithium storage. J Alloys Compd 745:147–154.  https://doi.org/10.1016/j.jallcom.2018.02.167 CrossRefGoogle Scholar
  47. 47.
    Luo C, Lu W, Li Y, Feng Y, Feng W, Zhao Y, Yuan X (2013) Preparation of C/Ni–NiO composite nanofibers for anode materials in lithium-ion batteries. Applied Physics A 113(3):683–692.  https://doi.org/10.1007/s00339-013-7700-9 CrossRefGoogle Scholar
  48. 48.
    Hwang S-G, Kim G-OK, Yun S-R, Ryu K-S (2012) NiO nanoparticles with plate structure grown on graphene as fast charge–discharge anode material for lithium ion batteries. Electrochim Acta 78:406–411.  https://doi.org/10.1016/j.electacta.2012.06.031 CrossRefGoogle Scholar
  49. 49.
    Liu L, Guo H, Liu J, Qian F, Zhang C, Li T, Chen W, Yang X, Guo Y (2014) Self-assembled hierarchical yolk-shell structured NiO@C from metal-organic frameworks with outstanding performance for lithium storage. Chem Commun (Camb) 50(67):9485–9488.  https://doi.org/10.1039/c4cc03807j CrossRefGoogle Scholar
  50. 50.
    Rahman MM, Chou S-L, Zhong C, Wang J-Z, Wexler D, Liu H-K (2010) Spray pyrolyzed NiO–C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention. Solid State Ionics 180(40):1646–1651.  https://doi.org/10.1016/j.ssi.2009.10.018 CrossRefGoogle Scholar
  51. 51.
    Liu Q, Ye J, Chen Z, Hao Q, Xu C, Hou J (2019) Double conductivity-improved porous Sn/Sn4P3@carbon nanocomposite as high performance anode in Lithium-ion batteries. J Colloid Interface Sci 537:588–596.  https://doi.org/10.1016/j.jcis.2018.11.060 CrossRefPubMedGoogle Scholar
  52. 52.
    Huang XH, Tu JP, Zhang B, Zhang CQ, Li Y, Yuan YF, Wu HM (2006) Electrochemical properties of NiO–Ni nanocomposite as anode material for lithium ion batteries. J Power Sources 161(1):541–544.  https://doi.org/10.1016/j.jpowsour.2006.03.039 CrossRefGoogle Scholar
  53. 53.
    Kang Y-M, Kim K-T, Kim J-H, Kim H-S, Lee PS, Lee J-Y, Liu HK, Dou SX (2004) Electrochemical properties of Co3O4, Ni–Co3O4 mixture and Ni–Co3O4 composite as anode materials for Li ion secondary batteries. J Power Sources 133(2):252–259.  https://doi.org/10.1016/j.jpowsour.2004.02.012 CrossRefGoogle Scholar
  54. 54.
    Wen W, Wu J, Cao M (2013) NiO/Ni powders with effective architectures as anode materials in Li-ion batteries. J Mater Chem A 1(12):3881.  https://doi.org/10.1039/c3ta01626a CrossRefGoogle Scholar
  55. 55.
    Li D, Li X, Wang S, Zheng Y, Qiao L, He D (2014) Carbon-wrapped Fe3O4 nanoparticle films grown on nickel foam as binder-free anodes for high-rate and long-life lithium storage. ACS Appl Mater Interfaces 6(1):648–654.  https://doi.org/10.1021/am404756h CrossRefPubMedGoogle Scholar
  56. 56.
    Xu X, Tan H, Xi K, Ding S, Yu D, Cheng S, Yang G, Peng X, Fakeeh A, Kumar RV (2015) Bamboo-like amorphous carbon nanotubes clad in ultrathin nickel oxide nanosheets for lithium-ion battery electrodes with long cycle life. Carbon 84:491–499.  https://doi.org/10.1016/j.carbon.2014.12.040 CrossRefGoogle Scholar
  57. 57.
    Ni S, Ma J, Lv X, Yang X, Zhang L (2014) The fine electrochemical performance of porous Cu3P/cu and the high energy density of Cu3P as anode for Li-ion batteries. J Mater Chem A 2(48):20506–20509.  https://doi.org/10.1039/c4ta03871a CrossRefGoogle Scholar
  58. 58.
    Cheng C-F, Chen Y-M, Zou F, Yang K-C, Lin T-Y, Liu K, Lai C-H, Ho R-M, Zhu Y (2018) Nanoporous gyroid Ni/NiO/C nanocomposites from block copolymer templates with high capacity and stability for lithium storage. J Mater Chem A 6(28):13676–13684.  https://doi.org/10.1039/c8ta04077j CrossRefGoogle Scholar
  59. 59.
    Su L, Zhou Z, Shen P (2012) Ni/C hierarchical nanostructures with Ni nanoparticles highly dispersed in N-containing carbon nanosheets: origin of Li storage capacity. J Phys Chem C 116(45):23974–23980.  https://doi.org/10.1021/jp310054b CrossRefGoogle Scholar
  60. 60.
    Su L, Zhong Y, Zhou Z (2013) Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: a case study of hierarchical core–shell Fe3O4@C and Fe@C microspheres. J Mater Chem A 1(47):15158–15166.  https://doi.org/10.1039/c3ta13233a CrossRefGoogle Scholar
  61. 61.
    Li X, Fan L, Li X, Shan H, Chen C, Yan B, Xiong D, Li D (2018) Enhanced anode performance of flower-like NiO/RGO nanocomposites for lithium-ion batteries. Mater Chem Phys 217:547–552.  https://doi.org/10.1016/j.matchemphys.2018.06.050 CrossRefGoogle Scholar
  62. 62.
    Chen J, Wu X, Tan Q, Chen Y (2018) Designed synthesis of ultrafine NiO nanocrystals bonded on a three dimensional graphene framework for high-capacity lithium-ion batteries. New J Chem 42(12):9901–9910.  https://doi.org/10.1039/c8nj01330f CrossRefGoogle Scholar
  63. 63.
    Xia Q, Zhao H, Du Z, Zhang Z, Li S, Gao C, Świerczek K (2016) Design and synthesis of a 3-D hierarchical molybdenum dioxide/nickel/carbon structured composite with superior cycling performance for lithium ion batteries. J Mater Chem A 4(2):605–611.  https://doi.org/10.1039/c5ta07052j CrossRefGoogle Scholar
  64. 64.
    Ni S, Lv X, Li T, Yang X, Zhang L, Ren Y (2013) A novel electrochemical activation effect induced morphology variation from massif-like CuxO to forest-like Cu2O nanostructure and the excellent electrochemical performance as anode for Li-ion battery. Electrochim Acta 96:253–260.  https://doi.org/10.1016/j.electacta.2013.02.106 CrossRefGoogle Scholar
  65. 65.
    Lua X, Wanga R, Baia Y, Chena J, Suna* J (2015) Facile preparation of three-dimensional Fe3O4/macroporous graphene composite for high performance Li storage. J Mater Chem A 3(22):12031–12037CrossRefGoogle Scholar
  66. 66.
    Mai YJ, Shi SJ, Zhang D, Lu Y, Gu CD, Tu JP (2012) NiO–graphene hybrid as an anode material for lithium ion batteries. J Power Sources 204:155–161.  https://doi.org/10.1016/j.jpowsour.2011.12.038 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringLanzhou University of TechnologyLanzhouChina
  2. 2.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous MetalsLanzhouChina
  3. 3.Department of Manufacturing EngineeringGeorgia Southern UniversityStatesboroUSA

Personalised recommendations