Advertisement

Ionics

, Volume 25, Issue 12, pp 5857–5868 | Cite as

Asymmetric reaction pathway of Na+-ion during fast cycling in α- and γ-Fe2O3 thin film anode for sodium-ion battery

  • Debasis NayakEmail author
  • Sreeraj Puravankar
  • Sudipto Ghosh
  • Venimadhav Adyam
Original Paper
  • 85 Downloads

Abstract

This study aims to evaluate various polymorphs of Fe2O3 (γ- and α-types) as anode material for sodium-ion batteries and their conversion mechanisms. In this work, pulsed laser deposition (PLD) was used to successfully fabricate Fe2O3 (both γ- and α-types) thin film followed by the electrochemical investigation as anode material for a sodium-ion battery. The γ-Fe2O3 shows high reversibility than α-Fe2O3 while discharging at a deep discharge voltage of 0.01 V. The α-Fe2O3 changes to Fe3O4 during sodium extraction, while the γ-Fe2O3 remains unaltered upon cycling. The γ-Fe2O3 shows high electrochemical performance regarding cycle life and discharge capacity than α-Fe2O3 (considering up to 80 cycles). The discharge capacity of γ-Fe2O3 is 335.2 mAh g−1 and of α-Fe2O3 is 248.7 mAh g−1 for the 1st cycle at a current rate of 475 mA g−1. The achieved superior performance of γ-Fe2O3 is credited to the reversible reaction path and binder-free nature of the thin film.

Keywords

γ- and α-Fe2O3 Pulsed laser deposition Thin film Sodium-ion batteries Anode 

Notes

Acknowledgments

The authors would like to acknowledge that the financial support for this work came from the Ministry of Human Resource Development (MHRD), Government of India, through the initiative of IMPACTING RESEARCH INNOVATION AND TECHNOLOGY (IMPRINT), grant number 7911.

References

  1. 1.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682.  https://doi.org/10.1021/cr500192f CrossRefPubMedGoogle Scholar
  2. 2.
    Whittingham MS (1978) Chemistry of intercalation compounds: metal guests in chalcogenide hosts. Prog Solid State Chem 12:41–99.  https://doi.org/10.1016/0079-6786(78)90003-1 CrossRefGoogle Scholar
  3. 3.
    Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192:1126–1127.  https://doi.org/10.1126/science.192.4244.1126 CrossRefPubMedGoogle Scholar
  4. 4.
    Sawicki M, Shaw LL (2015) Advances and challenges of sodium ion batteries as post lithium ion batteries. RSC Adv 5:53129–53154.  https://doi.org/10.1039/C5RA08321D CrossRefGoogle Scholar
  5. 5.
    Kang H, Liu Y, Cao K, Zhao Y, Jiao L, Wang Y, Yuan H (2015) Update on anode materials for Na-ion batteries. J Mater Chem A 3:17899–17913.  https://doi.org/10.1039/C5TA03181H CrossRefGoogle Scholar
  6. 6.
    Chevrier VL, Ceder G (2011) Challenges for Na-ion negative electrodes. J Electrochem Soc 158:A1011.  https://doi.org/10.1149/1.3607983 CrossRefGoogle Scholar
  7. 7.
    Dahbi M, Yabuuchi N, Kubota K, Tokiwa K, Komaba S (2014) Negative electrodes for Na-ion batteries. Phys Chem Chem Phys 16:15007.  https://doi.org/10.1039/c4cp00826j CrossRefPubMedGoogle Scholar
  8. 8.
    Bommier C, Ji X (2015) Recent development on anodes for Na-ion batteries. Isr J Chem 55:486–507.  https://doi.org/10.1002/ijch.201400118 CrossRefGoogle Scholar
  9. 9.
    Kim Y, Ha K-H, Oh SM, Lee KT (2014) High-capacity anode materials for sodium-ion batteries. Chem Eur J 20:11980–11992.  https://doi.org/10.1002/chem.201402511 CrossRefPubMedGoogle Scholar
  10. 10.
    Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L (2016) Na-ion battery anodes: materials and electrochemistry. Acc Chem Res 49:231–240.  https://doi.org/10.1021/acs.accounts.5b00482 CrossRefPubMedGoogle Scholar
  11. 11.
    Baggetto L, Marszewski M, Górka J, Jaroniec M, Veith GM (2013) AlSb thin films as negative electrodes for Li-ion and Na-ion batteries. J Power Sources 243:699–705.  https://doi.org/10.1016/j.jpowsour.2013.06.074 CrossRefGoogle Scholar
  12. 12.
    Baggetto L, Hah H-Y, Jumas J-C, Johnson CE, Johnson JA, Keum JK, Bridges CA, Veith GM (2014) The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies. J Power Sources 267:329–336.  https://doi.org/10.1016/j.jpowsour.2014.05.083 CrossRefGoogle Scholar
  13. 13.
    Baggetto L, Keum JK, Browning JF, Veith GM (2013) Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun 34:41–44.  https://doi.org/10.1016/j.elecom.2013.05.025 CrossRefGoogle Scholar
  14. 14.
    Baggetto L, Allcorn E, Unocic RR, Manthiram A, Veith GM (2013) Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries. J Mater Chem A 1:11163.  https://doi.org/10.1039/c3ta12040f CrossRefGoogle Scholar
  15. 15.
    Nayak D, Ghosh S, Adyam V (2018) Thin film manganese oxide polymorphs as anode for sodium-ion batteries: an electrochemical and DFT based study. Mater Chem Phys 217:82–89.  https://doi.org/10.1016/j.matchemphys.2018.06.065 CrossRefGoogle Scholar
  16. 16.
    Hariharan S, Saravanan K, Balaya P (2013) α-MoO3: a high performance anode material for sodium-ion batteries. Electrochem Commun 31:5–9.  https://doi.org/10.1016/j.elecom.2013.02.020 CrossRefGoogle Scholar
  17. 17.
    Chowdhury M, Sharma SK, Chaudhary RJ (2015) Correlation between oxygen partial pressure and properties of pulsed laser deposited SnO2/Fe2O3 composite films. Adv Mater Lett 6:930–934.  https://doi.org/10.5185/amlett.2015.6017 CrossRefGoogle Scholar
  18. 18.
    Nam D-H, Hong K-S, Lim S-J, Kwon H-S (2014) Electrochemical synthesis of a three-dimensional porous Sb/Cu2Sb anode for Na-ion batteries. J Power Sources 247:423–427.  https://doi.org/10.1016/j.jpowsour.2013.08.095 CrossRefGoogle Scholar
  19. 19.
    Zhang J, Huang T, Liu Z, Yu A (2013) Mesoporous Fe2O3 nanoparticles as high performance anode materials for lithium-ion batteries. Electrochem Commun 29:17–20.  https://doi.org/10.1016/j.elecom.2013.01.002 CrossRefGoogle Scholar
  20. 20.
    Xu S, Hessel CM, Ren H, Yu R, Jin Q, Yang M, Zhao H, Wang D (2014) 1.4 α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ Sci 7:632.  https://doi.org/10.1039/c3ee43319f. CrossRefGoogle Scholar
  21. 21.
    Mi H, Xu Y, Shi W, Yoo H, Chae OB, Oh SM (2012) Flocculant-assisted synthesis of Fe2O3/carbon composites for superior lithium rechargeable batteries. Mater Res Bull 47:152–155.  https://doi.org/10.1016/j.materresbull.2011.10.009 CrossRefGoogle Scholar
  22. 22.
    Kan J, Wang Y (2013) Large and fast reversible Li-ion storages in Fe2O3-graphene sheet-on-sheet sandwich-like nanocomposites. Sci Rep 3:3502.  https://doi.org/10.1038/srep03502 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yu L, Wang HX, Liu ZY, Fu ZW (2010) Pulsed laser deposited FeOF as negative electrodes for rechargeable Li batteries. Electrochim Acta 56:767–775.  https://doi.org/10.1016/j.electacta.2010.09.103 CrossRefGoogle Scholar
  24. 24.
    Komaba S, Mikumo T, Yabuuchi N, Ogata A, Yoshida H, Yamada Y (2010) Electrochemical insertion of Li and Na ions into nanocrystalline Fe3O4 and α-Fe2O3 for rechargeable batteries. J Electrochem Soc 157:A60.  https://doi.org/10.1149/1.3254160 CrossRefGoogle Scholar
  25. 25.
    Nageswara Rao B, Ramesh Kumar P, Padmaraj O, Venkateswarlu M, Satyanarayana N (2015) Rapid microwave assisted hydrothermal synthesis of porous [small alpha]-Fe2O3 nanostructures as stable and high capacity negative electrode for lithium and sodium ion batteries. RSC Adv 5:34761–34768.  https://doi.org/10.1039/C5RA03238E CrossRefGoogle Scholar
  26. 26.
    Wu Z, Zhong Y, Liu J, Wu J, Guo X, Zhong B, Zhang ZY (2015) Subunits controlled synthesis of α-Fe2O3 multi-shelled core–shell microspheres and their effects on lithium/sodium ion battery performances. J Mater Chem A 3:10092–10099.  https://doi.org/10.1039/C5TA01334H CrossRefGoogle Scholar
  27. 27.
    Jian Z, Zhao B, Liu P, Li F, Zheng M, Chen M et al (2014) Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem Commun (Camb) 50:1215–1217.  https://doi.org/10.1039/c3cc47977c. CrossRefGoogle Scholar
  28. 28.
    Kumar PR, Jung YH, Bharathi KK, Lim CH, Kim DK (2014) High capacity and low cost spinel Fe3O4 for the Na-ion battery negative electrode materials. Electrochim Acta 146:503–510.  https://doi.org/10.1016/j.electacta.2014.09.081 CrossRefGoogle Scholar
  29. 29.
    Oh S, Myung S, Yoon CS, Lu J, Hassoun J, Scrosati B et al (2014) Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C–Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage. Nano Lett 14:1620–1626.  https://doi.org/10.1021/nl500077v CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang X, Niu Y, Meng X, Li Y, Zhao J (2013) Structural evolution and characteristics of the phase transformations between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmospheres. CrystEngComm 15:8166–8172.  https://doi.org/10.1039/C3CE41269E CrossRefGoogle Scholar
  31. 31.
    Phu ND, Ngo DT, Hoang LH, Luong NH, Chau N, Hai NH (2011) Crystallization process and magnetic properties of amorphous iron oxide nanoparticles. J Phys D Appl Phys 44:345002.  https://doi.org/10.1088/0022-3727/44/34/345002 CrossRefGoogle Scholar
  32. 32.
    Pati SS, Singh LH, Ochoa JCM, Guimarãesa EM, Sales MJA, Coaquira JAH, Oliveira AC, Garg VK (2015) Facile approach to suppress γ-Fe2O3 to α-Fe2O3 phase transition beyond 600 °C in Fe3O4 nanoparticles. Mater Res Exp 2:045003.  https://doi.org/10.1088/2053-1591/2/4/045003 CrossRefGoogle Scholar
  33. 33.
    Genuzio F, Sala A, Schmidt T, Menzel D, Freund HJ (2014) Interconversion of α-Fe2O3 and Fe3O4 thin films: mechanisms, morphology, and evidence for unexpected substrate participation. J Phys Chem C 118:29068–29076.  https://doi.org/10.1021/jp504020a CrossRefGoogle Scholar
  34. 34.
    Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276.  https://doi.org/10.1107/S0021889811038970 CrossRefGoogle Scholar
  35. 35.
    Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449.  https://doi.org/10.1016/j.apsusc.2007.09.063 CrossRefGoogle Scholar
  36. 36.
    Aronniemi M, Lahtinen J, Hautojärvi P (2004) Characterization of iron oxide thin films. Surf Interface Anal 36:1004–1006.  https://doi.org/10.1002/sia.1823 CrossRefGoogle Scholar
  37. 37.
    Kong H, Song J, Jang J, Wu J, Sinnecker EHCP, Lima ECD et al (2010) One-step fabrication of magnetic γ-Fe2O3/polyrhodanine nanoparticles using in situ chemical oxidation polymerization and their antibacterial properties. Chem Commun 46:6735.  https://doi.org/10.1039/c0cc00736f CrossRefGoogle Scholar
  38. 38.
    Ranganath SB, Hassan AS, Ramachandran BR, Wick CD (2016) Role of metal-lithium oxide interfaces in the extra lithium capacity of metal oxide lithium-ion battery anode materials. J Electrochem Soc 163:A2172–A2178.  https://doi.org/10.1149/2.0281610jes CrossRefGoogle Scholar
  39. 39.
    Wen J-W, Zhang D-W, Zang Y, Sun X, Cheng B, Ding C-X, Yu Y, Chen CH (2014) Li and Na storage behavior of bowl-like hollow Co3O4 microspheres as an anode material for lithium-ion and sodium-ion batteries. Electrochim Acta 132:193–199.  https://doi.org/10.1016/j.electacta.2014.03.139 CrossRefGoogle Scholar
  40. 40.
    Li L, Jacobs R, Gao P, Gan L, Wang F, Morgan D, Jin S (2016) Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes. J Am Chem Soc 138:2838–2848.  https://doi.org/10.1021/jacs.6b00061 CrossRefPubMedGoogle Scholar
  41. 41.
    Nitta N, Yushin G (2014) High-capacity anode materials for lithium-ion batteries: choice of elements and structures for active particles. Part Part Syst Charact 31:317–336.  https://doi.org/10.1002/ppsc.201300231 CrossRefGoogle Scholar
  42. 42.
    Jiang Y, Hu M, Zhang D, Yuan T, Sun W, Xu B, Yan M (2014) Transition metal oxides for high performance sodium ion battery anodes. Nano Energy 5:60–66.  https://doi.org/10.1016/j.nanoen.2014.02.002 CrossRefGoogle Scholar
  43. 43.
    Thackeray MM, David WIF, Goodenough JB (1982) Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0). Mater Res Bull 17:785–793.  https://doi.org/10.1016/0025-5408(82)90029-0. CrossRefGoogle Scholar
  44. 44.
    Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier VL, Persson KA, Ceder G (2013) Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci 68:314–319.  https://doi.org/10.1016/j.commatsci.2012.10.028 CrossRefGoogle Scholar
  45. 45.
    Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 1:011002.  https://doi.org/10.1063/1.4812323 CrossRefGoogle Scholar
  46. 46.
    Grau-Crespo R, Al-Baitai AY, Saadoune I, De Leeuw NH (2010) Vacancy ordering and electronic structure of γ-Fe2O3 (maghemite): a theoretical investigation. J Phys Condens Matter 22:255401.  https://doi.org/10.1088/0953-8984/22/25/255401 CrossRefPubMedGoogle Scholar
  47. 47.
    Tian LL, Zhang MJ, Wu C, Wei Y, Zheng JX, Lin LP, Lu J, Amine K, Zhuang QC, Pan F (2015) γ-Fe2O3 nanocrystalline microspheres with hybrid behavior of battery-supercapacitor for superior lithium storage. ACS Appl Mater Interfaces 7:26284–26290.  https://doi.org/10.1021/acsami.5b08756 CrossRefPubMedGoogle Scholar
  48. 48.
    Xiao W, Wang Z, Zhang Y, Fang R, Yuan Z, Miao C, Yan X, Jiang Y (2018) Enhanced performance of P(VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries. J Power Sources 382:128–134.  https://doi.org/10.1016/j.jpowsour.2018.02.012 CrossRefGoogle Scholar
  49. 49.
    Xiao W, Wang Z, Miao C, Mei P, Zhang Y, Yan X, Tian M, Jiang Y, Liu J (2018) High performance composite polymer electrolytes doped with spherical-like and honeycomb structural Li0.1Ca0.9TiO3 particles. Front Chem 6:1–10.  https://doi.org/10.3389/fchem.2018.00525 CrossRefGoogle Scholar
  50. 50.
    Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931.  https://doi.org/10.1021/jp074464w CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Debasis Nayak
    • 1
    Email author
  • Sreeraj Puravankar
    • 2
  • Sudipto Ghosh
    • 1
  • Venimadhav Adyam
    • 3
  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of TechnologyKharagpurIndia
  2. 2.School of Energy Science & EngineeringIndian Institute of TechnologyKharagpurIndia
  3. 3.Cryogenic Engineering CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations