, Volume 25, Issue 12, pp 5655–5667 | Cite as

Solvothermally synthesized Li(Ni0.6Co0.2Mn0.2)xCd1-xO2 cathode materials with excellent electrochemical performance for lithium-ion batteries

  • Shengde Dong
  • Yuan ZhouEmail author
  • Chunxi Hai
  • Jinbo Zeng
  • Yanxia Sun
  • Yue Shen
  • Xiang Li
  • Xiufeng Ren
  • Guicai Qi
  • Luxiang Ma
Original Paper


In this study, a Ni-Co-Mn-Cd-based precursor was synthesized using a solvothermal method and the Li(Ni0.6Co0.2Mn0.2O2)xCd1-xO2 cathode materials were prepared using a high-temperature solid-phase method. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to determine the morphology, structure, elemental composition, and electronic state of the pristine and Cd-doped cathode materials. The electrochemical tests indicated that the Cd-doped samples exhibited better electrochemical performance than the pristine material; specifically, at a doping amount of 0.01 mol, the initial discharge capacity was 186.3 mAh g−1 with a capacity retention of 87.49% after 200 cycles at a current rate of 0.5 C and a capacity retention of 72.43% after 300 cycles at a current rate of 2 C, whereas the pristine material only had an initial capacity of 173.2 mAh g−1 and a capacity retention of 61.25% and 41.09% for the same current rate and cycle number, respectively. In addition, at 8 C, the discharge capacity was 129.8 mAh g−1 for the Cd-doped samples but only 119.6 mAh g−1 for the pristine material. The enhanced electrochemical performance was attributed to the in situ doping modification during the synthesis process of the precursor. This approach effectively stabilized the crystal structure, improved the electronic conductivity of the material, and reduced the impact of the hydrofluoric acid (HF) on the electrode surface due to the generation of CdF2 during the cycle process.


Ni-Co-Mn-Cd-based precursor Li(Ni0.6Co0.2Mn0.2O2)xCd1-xO2 Solvothermal method Cathode materials 


Funding information

This work was supported by Qinghai Provincial Thousand Talents Program for High-level Innovative Professionals, Youth Innovation Promotion Association CAS (grant no. 2016376), and CAS Hundred-Talent Program; Qinghai Science & Technology projects (grant no. 2016-GX-102).


  1. 1.
    Cho E, Seo SW, Min K (2017) Theoretical prediction of surface stability and morphology of LiNiO2 cathode for Li ion batteries. ACS Appl Mater Interfaces 9(38):33257–33266. CrossRefPubMedGoogle Scholar
  2. 2.
    Tao T, Chen C, Yao Y, Liang B, Lu S, Chen Y (2017) Enhanced electrochemical performance of ZrO2 modified LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries. Ceram Int 43(17):15173–15178. CrossRefGoogle Scholar
  3. 3.
    Kim TH, Park JS, Chang SK, Choi S, Ryu JH, Song HK (2012) The current move of Lithium ion batteries towards the next phase. Adv Energy Mater 2:860–872. CrossRefGoogle Scholar
  4. 4.
    Manthiram A, Knight JC, Myung ST, Oh SM, Sun YK (2016) Nickel-rich and Lithium-rich layered oxide cathodes: progress and perspectives. Adv Energy Mater 6:1501010. CrossRefGoogle Scholar
  5. 5.
    Huanga Z, Wanga Z, Jingb Q, Guoa H, Lia X, Yangc Z (2016) Investigation on the effect of Na doping on structure and Li-ion kinetics of layered LiNi0.6Co0.2Mn0.2O2 cathode material. Electrochim Acta 192:120–126. CrossRefGoogle Scholar
  6. 6.
    Schipper F, Erk EMEC, Shin J-Y, Chesneau FF, Aurbacha D (2017) Recent advances and remaining challenges for Lithium ion battery cathodes. J Electrochem Soc 164(1):A6220–A6228. CrossRefGoogle Scholar
  7. 7.
    Wu T, Ma Y, Qu ZB, Fan JC, Li QX, Shi PH, Xu QJ, Min YL (2019) Black phosphorus-graphene Heterostructure-supported Pd nanoparticles with superior activity and stability for ethanol electro-oxidation. ACS Appl Mater Interfaces 11(5):5136–5145. CrossRefPubMedGoogle Scholar
  8. 8.
    Gong S, Jiang Z, Shi P, Fan J, Xu Q, Min Y (2018) Noble-metal-free heterostructure for efficient hydrogen evolution in visible region: molybdenum nitride/ultrathin graphitic carbon nitride. Appl Catal B Environ 238:318–327. CrossRefGoogle Scholar
  9. 9.
    Nguyen DT, Kang J, Nam KM, Paik Y, Song SW (2016) Understanding interfacial chemistry and stability for performance improvement and fade of high-energy li-ion battery of LiNi0.5Co0.2Mn0.3O2 silicon-graphite. J Power Sources 303:303150–303158. CrossRefGoogle Scholar
  10. 10.
    Hu K, Qi X, Lu C, Du K, Peng Z, Cao Y, Hu G (2018) Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials via Li4P2O7 surface modification for Li-ion batteries. Ceram Int 44(12):14209–14216. CrossRefGoogle Scholar
  11. 11.
    Huang J, Fang X, Wu Y, Zhou L, Wang Y, Jin Y, Dang W, Wu L, Rong Z, Chen X, Tang X (2018) Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 by surface modification with lithium-active MoO3. J Electroanal Chem 823:359–367. CrossRefGoogle Scholar
  12. 12.
    Cao Y, Qi X, Hu K, Wang Y, Gan Z, Li Y, Hu G, Peng Z, Du K (2018) Conductive polymers encapsulating to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries. ACS Appl Mater Interfaces 10(21):18270–18280. CrossRefPubMedGoogle Scholar
  13. 13.
    Chen S, He T, Su Y, Lu Y, Bao L, Chen L, Zhang Q, Wang J, Chen R, Wu F (2017) Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode material for Lithium-ion batteries. ACS Appl Mater Interfaces 9(35):29732–29743. CrossRefPubMedGoogle Scholar
  14. 14.
    Lee JH, Yoon CS, Hwang JY, Kim SJ, Maglia F, Peter Lamp C, Myung ST, Sun YK (2016) High-energy-density lithium-ion battery using carbon-nanotube-Si composite anode and compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode. Energy Environ Sci 9:2152–2158. CrossRefGoogle Scholar
  15. 15.
    Pişkin B, Savaş Uygur C, Aydınol MK (2018) Mo doping of layered Li(NixMnyCo1-x-y-zMz)O2 cathode materials for lithium-ion batteries. Int J Energy Res 42(12):3888–3898. CrossRefGoogle Scholar
  16. 16.
    Jia X, Yan M, Zhou Z, Chen X, Yao C, Li D, Chen D, Chen Y (2017) Nd-doped LiNi0.5Co0.2Mn0.3O2 as a cathode material for better rate capability in high voltage cycling of Li-ion batteries. Electrochim Acta 254:50–58. CrossRefGoogle Scholar
  17. 17.
    Kim J, Lee H, Cha H, Yoon M, Park M, Cho J (2018) Prospect and reality of Ni-rich cathode for commercialization. Adv Energy Mater 8(6):1702029–1702053. CrossRefGoogle Scholar
  18. 18.
    Fu C, Zhou Z, Liu Y, Zhang Q, Zheng Y, Li G (2011) Synthesis and electrochemical properties of mg-doped LiNi0.6Co0.2Mn0.2O2 cathode materials for Li-ion battery. J Wuhan Univ Technol 26(2):211–215. CrossRefGoogle Scholar
  19. 19.
    Zeng Y, Qiu K, Yang Z, Zhou F, Xia L, Bu Y (2016) Influence of europium doping on the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Ceram Int 42:10433–10438. CrossRefGoogle Scholar
  20. 20.
    Ghorbanzadeh M, Allahyari E, Riahifar R, Hadavi SMM (2017) Effect of Al and Zr co-doping on electrochemical performance of cathode Li[Li0.2Ni0.13Co0.13Mn0.54]O2 for Li-ion battery. J Solid State Electrochem 22(4):1155–1163. CrossRefGoogle Scholar
  21. 21.
    Markus IM, Lin F, Kam KC, Asta M, Doeff MM (2014) Computational and experimental investigation of Ti substitution in Li1(NixMnxCo1-2x-yTiy)O2 for Lithium ion batteries. J Phys Chem Lett 5(21):3649–3655. CrossRefPubMedGoogle Scholar
  22. 22.
    Yang Z, Guo X, Xiang W, Hua W, Zhang J, He F, Wang K, Xiao Y, Zhong B (2017) K-doped layered LiNi0.5Co0.2Mn0.3O2 cathode material: towards the superior rate capability and cycling performance. J Alloys Compd 699:358–365. CrossRefGoogle Scholar
  23. 23.
    Ding YH, Zhang P, Long ZL, Jiang Y, Xu F (2009) Morphology and electrochemical properties of Al doped LiNi1/3Co1/3Mn1/3O2 nanofibers prepared by electrospinning. J Alloy Compd 487(1–2):507–510. CrossRefGoogle Scholar
  24. 24.
    Fu C, Li G, Luo D, Huang X, Zheng J, Li L (2014) One-step calcination-free synthesis of multicomponent spinel assembled microspheres for high-performance anodes of li-ion batteries: a case study of MnCo2O4. J Electroanal Chem 6(4):2439–2449. CrossRefGoogle Scholar
  25. 25.
    Chen Y, Li Y, Tang S, Lei T, Deng S, Xue L, Cao G, Zhu J (2018) Enhanced electrochemical properties of the cd-modified LiNi0.6Co0.2Mn0.2O2 cathode materials at high cut-off voltage. J Power Sources 395:403–413. CrossRefGoogle Scholar
  26. 26.
    Pan LL, Meng KK, Li GY, Sun HM, Lian JS (2014) Structural, optical and electrical characterization of gadolinium and indium doped cadmium oxide/psilicon heterojunctions for solar cell applications. RSC Adv 4:52451–52460. CrossRefGoogle Scholar
  27. 27.
    Pan LL, Li GY, Lian JS (2013) Structural, optical and electrical properties of cerium and gadolinium doped CdO. Appl Surf Sci 274:365–370. CrossRefGoogle Scholar
  28. 28.
    Chen B, Zhao B, Zhou J, Fang Z, Huang Y, Zhu X, Sun Y (2019) Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries. J Mater Sci Technol 35(6):994–1002. CrossRefGoogle Scholar
  29. 29.
    Ma Y, Liu P, Xie Q, Zhang G, Zheng H, Cai Y, Li Z, Wang L, Zhu Z-Z, Mai L, Peng D-L (2019) Double-shell Li-rich layered oxide hollow microspheres with sandwich-like carbon@spinel@layered@spinel@carbon shells as high-rate lithium ion battery cathode. Nano Energy 59:59184–59196. CrossRefGoogle Scholar
  30. 30.
    Fu CC, Li GS, Luo D, Li Q, Fan JM, Li LP (2014) Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance. Appl Surf Sci 6(18):15822–15831. CrossRefGoogle Scholar
  31. 31.
    Liu S, Wu H, Huang L, Xiang M, Liu H, Zhang Y (2016) Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries. J Alloy Compd 674:447–454. CrossRefGoogle Scholar
  32. 32.
    Xu YD, Xiang W, Wu ZG, Xu CL, Li YC, Guo XD, Lv GP, Peng X, Zhong BH (2018) Improving cycling performance and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials by Li4Ti5O12 coating. Electrochim Acta 268:358–365. CrossRefGoogle Scholar
  33. 33.
    Fenga J, Xiong S, Qianb Y, Yina L (2014) Synthesis of nanosized cadmium oxide (CdO) as a novel high capacityanode material for Lithium-ion batteries: influence of carbonnanotubes decoration and binder choice. Electrochim Acta 129:107–112. CrossRefGoogle Scholar
  34. 34.
    Mo Y, Guo L, Cao B, Wang Y, Zhang L, Jia X, Chen Y (2018) Correlating structural changes of the improved cyclability upon Nd-substitution in LiNi0.5Co0.2Mn0.3O2 cathode materials. Energy Storage Mater 18:260–268. CrossRefGoogle Scholar
  35. 35.
    Yi TF, Han X, Chen B, Zhu YR, Xie Y (2017) Porous sphere-like LiNi0.5Mn1.5O4-CeO2 composite with high cycling stability as cathode material for lithium-ion battery. J Alloy Compd 703:103–113. CrossRefGoogle Scholar
  36. 36.
    Ren D, Shen Y, Yang Y, Shen L, Levin BDA, Yu Y, Muller DA, Abruna HD (2017) Systematic optimization of battery materials: key parameter optimization for the scalable synthesis of uniform, high-energy, and high stability LiNi0.6Mn0.2Co0.2O2 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 9:35811–35819. CrossRefPubMedGoogle Scholar
  37. 37.
    Breuer O, Chakraborty A, Liu J, Kravchuk T, Burstein L, Grinblat J, Kauffman Y, Gladkih A, Nayak P, Tsubery M, Frenkel AI, Talianker M, Major DT, Markovsky B, Aurbach D (2018) Understanding the role of minor molybdenum doping in LiNi0.5Co0.2Mn0.3O2 electrodes: from structural and surface analyses and theoretical modeling to practical electrochemical cells. ACS Appl Mater Interfaces 10(35):29608–29621. CrossRefPubMedGoogle Scholar
  38. 38.
    Zheng X, Li X, Wang Z, Guo H, Huang Z, Yan G, Wang D (2016) Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2 based materials for lithium ion battery. Electrochim Acta 191:832–840. CrossRefGoogle Scholar
  39. 39.
    Andersson AM, Abraham DP, Haasch R, MacLaren S, Liu J, Aminea K (2002) Surface characterization of electrodes from high power lithium-ion batteries. J Electrochem Soc 149(10):A1358–A1369. CrossRefGoogle Scholar
  40. 40.
    Liu H, Yang Y, Zhang J (2006) Investigation and improvement on the storage property of LiNi0.8Co0.2O2 as a cathode material for lithium-ion batteries. J Power Sources 162:644–650. CrossRefGoogle Scholar
  41. 41.
    Chang C-C, Scarr N, Kumta PN (1998) Synthesis and electrochemical characterization of LiMO2 (M=Ni, Ni0.75Co0.25) for rechargeable lithium ion batteries. Solid State Ionics 112:329–344. CrossRefGoogle Scholar
  42. 42.
    Wang D, Li X, Wang Z, Guo H, Xu Y, Fan Y, Ru J (2016) Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochim Acta 188:48–56. CrossRefGoogle Scholar
  43. 43.
    Zhang LL, Duan S, Yang XL, Liang G, Huang YH, Cao XZ, Yang J, Ni SB, Li M (2014) Systematic investigation on cadmium-incorporation in Li2FeSiO4/C cathode material for lithium-ion batteries. Sci Rep 4:5064. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Xie J, Sendek AD, Cubuk ED, Zhang XK, Lu ZY, Gong YJ, Wu T, Shi FF, Liu W, Reed EJ, Cui Y (2017) Atomic layer deposition of stable LiAlF4 lithium ion conductive interfacial layer for stable cathode cycling. ACS Nano 11(7):7019–7027. CrossRefPubMedGoogle Scholar
  45. 45.
    Qiu B, Zhang M, Wu L, Wang J, Xia Y, Qian D, Liu H, Hy S, Chen Y, An K, Zhu Y, Liu Z, Meng YS (2016) Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat Commun 7:12108. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Woo SW, Myung ST, Bang H, Kim DW, Sun YK (2009) Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochim Acta 54(15):3851–3856. CrossRefGoogle Scholar
  47. 47.
    Chen X, Ma F, Li Y, Liang J, Matthews B, Sokolowski J, Han J, Wu G, Lu X, Li Q (2018) Nitrogen-doped carbon coated LiNi0.6Co0.2Mn0.2O2 cathode with enhanced electrochemical performance for Li-ion batteries. Electrochim Acta 284:526–533. doi CrossRefGoogle Scholar
  48. 48.
    Tao F, Yan XX, Liu JJ, Lei H, Chen ZL (2016) Effects of PVP-assisted Co3O4 coating on the electrochemical and storage properties of LiNi0.6Co0.2Mn0.2O2 at high cut-off voltage. Electrochim Acta 210:548–556. CrossRefGoogle Scholar
  49. 49.
    Wang H, Ge W, Li W, Wang F, Liu W, Qu MZ, Peng G (2016) Facile fabrication of ethoxy-functional polysiloxane wrapped LiNi0.6Co0.2Mn0.2O2 cathode with improved cycling performance for rechargeable Li-ion battery. ACS Appl Mater Interfaces 8(28):18439–18449. CrossRefPubMedGoogle Scholar
  50. 50.
    Xie H, Dua K, Hua G, Duan J, Penga Z, Zhanga Z, Caoa Y (2015) Synthesis of LiNi0.8Co0.15Al0.05O2 with 5-sulfosalicylic acid as chelating agent and its electrochemical properties. J Mater Chem A 3:20236–20243. CrossRefGoogle Scholar
  51. 51.
    V B JF, Habermeier HU, Maier J (2000) Geometry dependence of cathode polarization in solid oxide fuel cells investigated by defined Sr-doped LaMnO3 microelectrodes. Electrochem Solid-State Lett 3(9):403–406. CrossRefGoogle Scholar
  52. 52.
    Yang K, Fan LZ, Guo J, Qu X (2012) Significant improvement of electrochemical properties of AlF3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials. Electrochim Acta 63:363–368. CrossRefGoogle Scholar
  53. 53.
    Ge WJ, Li X, Wang H, Li W, Wei AJ, Peng GC, Qu MZ (2016) Multifunctional modification of Li[Ni0.5Co0.2Mn0.3]O2 with NH4VO3 as a high performance cathode material for lithium ion batteries. J Alloy Compd 684:594–603. CrossRefGoogle Scholar
  54. 54.
    Yang S, Wang X, Yang X, Bai Y, Liu Z, Shu H, Wei Q (2012) Determination of the chemical diffusion coefficient of lithium ions in spherical Li[Ni0.5Mn0.3Co0.2]O2. Electrochim Acta 66:88–93. CrossRefGoogle Scholar
  55. 55.
    Ni J, Zhou H, Chen J, Zhang X (2008) Improved electrochemical performance of layered LiNi0.4Co0.2Mn0.4O2 via Li2ZrO3 coating. Electrochim Acta 53:3075–3083. CrossRefGoogle Scholar
  56. 56.
    Zhou A, Lu Y, Wang Q, Xu J, Wang W, Dai X, Li J (2017) Sputtering TiO2 on LiCoO2 composite electrodes as a simple and effective coating to enhance high-voltage cathode performance. J Power Sources 346:24–30. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shengde Dong
    • 1
    • 2
    • 3
  • Yuan Zhou
    • 1
    • 2
    Email author
  • Chunxi Hai
    • 1
    • 2
  • Jinbo Zeng
    • 1
    • 2
  • Yanxia Sun
    • 1
    • 2
  • Yue Shen
    • 1
    • 2
  • Xiang Li
    • 1
    • 2
  • Xiufeng Ren
    • 1
    • 2
  • Guicai Qi
    • 1
    • 2
    • 3
  • Luxiang Ma
    • 1
    • 2
    • 3
  1. 1.Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt LakesChinese Academy of SciencesXiningChina
  2. 2.Key Laboratory of Salt Lake Resources Chemistry of Qinghai ProvinceXiningChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations