pp 1–9 | Cite as

Ni-rich LiNi0.6Co0.2Mn0.2O2 microrod with hierarchical structure synthesized by template reaction as cathode material for lithium-ion battery

  • Yue-Yue He
  • Chao-Qiong Zhu
  • Kang-Hui Hu
  • Kun ZhouEmail author
  • Qing-Yang
  • Xin-Lin Yan
  • Yin Liu
  • Er-Qiang Yang
  • Chao-Mei Yang
  • Nian-Cu Chen
Original Paper


In this work, one-dimensional Ni-rich LiNi0.6Co0.2Mn0.2O2 microrod cathode material for lithium-ion battery has been firstly prepared by a simple stepwise oxalate co-precipitation method. Rod-like CoC2O4·2H2O formed in the first process is served as template for the formation of MC2O4·2H2O (M=Ni, Co, Mn) precursor, and the morphology of rod-like is maintained after the heat treatment with Li2CO3. The crystalline structure and morphology of the samples are characterized by XRD, SEM, and TEM/HRTEM. The electrochemical performances are evaluated by galvanostatic charge/discharge tests. With the beneficiation of micro/nanostructure, the LiNi0.6Co0.2Mn0.2O2 microrod cathode material shows an initial discharge capacity of 162, 134, 117, and 105 mAh g−1 at 0.1 °C, 1 °C, 3 °C, and 5 °C, respectively, and maintains 72.8% of its initial discharge capacity after 100 cycles at 1 °C.


LiNi0.6Co0.2Mn0.2O2 Microrod Oxalate co-precipitation Cathode material 


Funding information

This work was funded by The National Natural Science Foundation of China (21805018) and the National Undergraduate Training Programs for Innovation and Entrepreneurship (201810616085).


  1. 1.
    Xu C-L, Xiang W, Wu Z-G, Xu Y-D, Li Y-C, Chen M-Z, XiaoDong G, Lv G-P, Zhang J, Zhong B-H (2018) Constructing a protective pillaring layer by incorporating gradient Mn4+ to stabilize the surface/interfacial structure of LiNi0.815Co0.15Al0.035O2 cathode. ACS Appl Mater Interfaces 10:27821–27830CrossRefGoogle Scholar
  2. 2.
    Xu X, Huo H, Jian J, Wang L, Zhu H, Xu S, He X, Yin G, Du C, Sun X (2019) Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Adv Energy Mater 0:1803963CrossRefGoogle Scholar
  3. 3.
    Liu W, Oh P, Liu X, Lee MJ, Cho W, Chae S, Kim Y, Cho J (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed 54:4440–4457CrossRefGoogle Scholar
  4. 4.
    Xiao B, Sun X (2018) Surface and subsurface reactions of lithium transition metal oxide cathode materials: an overview of the fundamental origins and remedying approaches. Adv Energy Mater 8:1802057CrossRefGoogle Scholar
  5. 5.
    Xiang W, Liu W-Y, Zhang J, Wang S, Zhang T-T, Yin K, Peng X, Jiang Y-C, Liu K-H, Guo X-D (2019) Controlled synthesis of nickel-rich layered oxide cathodes with preferentially exposed {010} active facets for high rate and long cycling stable lithium-ion batteries. J Alloys Compd 775:72–80CrossRefGoogle Scholar
  6. 6.
    Schipper F, Bouzaglo H, Dixit M, Erickson EM, Weigel T, Talianker M, Grinblat J, Burstein L, Schmidt M, Lampert J, Erk C, Markovsky B, Major DT, Aurbach D (2018) From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries. Adv Energy Mater 8Google Scholar
  7. 7.
    Sang-Hyuk L, Chong Seung Y, Amine K, Yang-Kook S (2013) Improvement of long-term cycling performance of Li Ni 0.8Co 0.15Al 0.05 O 2 by AlF 3 coating. J Power Sources 234:201–207CrossRefGoogle Scholar
  8. 8.
    Yan P, Zheng J, Liu J, Wang B, Cheng X, Zhang Y, Sun X, Wang C, Zhang J-G (2018) Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat Energy 3:600–605CrossRefGoogle Scholar
  9. 9.
    Xu Y-D, Xiang W, Wu Z-G, Xu C-L, Li Y-C, Guo X-D, Lv G-P, Peng X, Zhong B-H (2018) Improving cycling performance and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials by Li4Ti5O12 coating. Electrochim Acta 268:358–365CrossRefGoogle Scholar
  10. 10.
    Xu C-L, Xiang W, Wu Z-G, Li Y-C, Xu Y-D, Hua W-B, Guo X-D, Zhang X-B, Zhong B-H (2018) A comparative study of crystalline and amorphous Li0.5La0.5TiO3 as surface coating layers to enhance the electrochemical performance of LiNi0.815Co0.15Al0.035O2 cathode. J Alloys Compd 740:428–435CrossRefGoogle Scholar
  11. 11.
    Li Y-C, Zhao W-M, Xiang W, Wu Z-G, Yang Z-G, Xu C-L, Xu Y-D, Wang E-H, Wu C-J, Guo X-D (2018) Promoting the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via LaAlO3 coating. J Alloys Compd 766:546–555CrossRefGoogle Scholar
  12. 12.
    Xu C, Xiang W, Wu Z, Xu Y, Li Y, Wang Y, Xiao Y, Guo X, Zhong B (2019) Highly stabilized Ni-rich cathode material with Mo induced epitaxially grown nanostructured hybrid surface for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 11:16629–16638CrossRefGoogle Scholar
  13. 13.
    Li Y-C, Xiang W, Wu Z-G, Xu C-L, Xu Y-D, Xiao Y, Yang Z-G, Wu C-J, Lv G-P, Guo X-D (2018) Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation. Electrochim Acta 291:84–94CrossRefGoogle Scholar
  14. 14.
    Kim UH, Jun DW, Park KJ, Zhang Q, Kaghazchi P, Aurbach D, Major DT, Goobes G, Dixit M, Leifer N, Wang CM, Yan P, Ahn D, Kim KH, Yoon CS, Sun YK (2018) Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries. Energy Environ Sci 11:1271–1279CrossRefGoogle Scholar
  15. 15.
    Kim U-H, Myung S-T, Yoon CS, Sun Y-K (2017) Extending the battery life using an Al-doped Li[Ni0.76Co0.09Mn0.15]O2 cathode with concentration gradients for lithium ion batteries. ACS Energy Lett 2:1848–1854CrossRefGoogle Scholar
  16. 16.
    Yoon CS, Choi M-J, Jun D-W, Zhang Q, Kaghazchi P, Kim K-H, Sun Y-K (2018) Cation ordering of Zr-doped LiNiO2 cathode for lithium-ion batteries. Chem Mater 30:1808–1814CrossRefGoogle Scholar
  17. 17.
    Wang Y, Cao G (2008) Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater 20:2251–2269CrossRefGoogle Scholar
  18. 18.
    Li J, Wang X, Zhao J, Chen J, Jia T, Cao C (2016) Porous lithium nickel cobalt manganese oxide hierarchical nanosheets as high rate capability cathodes for lithium ion batteries. J Power Sources 307:731–737CrossRefGoogle Scholar
  19. 19.
    Zheng H, Chen X, Yang Y, Li L, Li G, Guo Z, Feng C (2017) Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathode with high electrochemical performance. ACS Appl Mater Interfaces 9:39560–39568CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Zhang W, Shen S, Yan X, Wu R, Wu A, Lastoskie C, Zhang J (2017) Sacrificial template strategy toward a hollow LiNi1/3Co1/3Mn1/3O2 nanosphere cathode for advanced lithium-ion batteries. ACS Omega 2:7593–7599CrossRefGoogle Scholar
  21. 21.
    Shi X-X, Liao S-X, Yuan B, Zhong Y-J, Zhong B-H, Liu H, Guo X-D (2015) Facile synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with hierarchical micro/nanostructure and high rate capability as cathode material for Li-ion battery. Acta Phys -Chim Sin 31:1527–1534Google Scholar
  22. 22.
    Xiang W, Zhu C-Q, Zhang J, Shi H, Liang Y-T, Yu M-H, Zhu X-M, He F-R, Lv G-P, Guo X-D (2019) Synergistic coupling effect of sodium and fluorine co-substitution on enhancing rate capability and cycling performance of Ni-rich cathode for lithium ion battery. J Alloys Compd 786:56–64CrossRefGoogle Scholar
  23. 23.
    Xu C-L, Xiang W, Wu Z-G, Xu Y-D, Li Y-C, Li H-T, Xiao Y, Tan B-C, Guo X-D, Zhong B-H (2019) Hierarchical hollow structured lithium nickel cobalt manganese oxide microsphere synthesized by template-sacrificial route as high performance cathode for lithium ion batteries. J Alloys Compd 777:434–442CrossRefGoogle Scholar
  24. 24.
    Yue P, Wang Z, Guo H, Wu F, He Z, Li X (2012) Effect of synthesis routes on the electrochemical performance of Li[Ni0.6Co0.2Mn0.2]O2 for lithium ion batteries. J Solid State Electrochem 16:3849–3854CrossRefGoogle Scholar
  25. 25.
    Zheng Z, Guo X-D, Chou S-L, Hua W-B, Liu H-K, Dou SX, Yang X-S (2016) Uniform Ni-rich LiNi0.6Co0.2Mn0.2O2 porous microspheres: facile designed synthesis and their improved electrochemical performance. Electrochim Acta 191:401–410CrossRefGoogle Scholar
  26. 26.
    Zhang S, Deng C, Yang SY, Niu H (2009) An improved carbonate co-precipitation method for the preparation of spherical Li[Ni1/3Co1/3Mn1/3]O2 cathode material. J Alloys Compd 484:519–523CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yue-Yue He
    • 1
  • Chao-Qiong Zhu
    • 1
  • Kang-Hui Hu
    • 1
  • Kun Zhou
    • 1
    Email author
  • Qing-Yang
    • 1
  • Xin-Lin Yan
    • 1
  • Yin Liu
    • 1
  • Er-Qiang Yang
    • 1
  • Chao-Mei Yang
    • 1
  • Nian-Cu Chen
    • 1
  1. 1.College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengduPeople’s Republic of China

Personalised recommendations