Advertisement

Ionics

pp 1–12 | Cite as

Plasticized solid polymer electrolyte based on natural polymer blend incorporated with lithium perchlorate for electrical double-layer capacitor fabrication

  • Y. M. Yusof
  • M. F. ShukurEmail author
  • M. H. Hamsan
  • K. Jumbri
  • M. F. Z. Kadir
Original Paper
  • 5 Downloads

Abstract

A plasticized solid polymer electrolyte system is prepared using polymer blend of methyl cellulose–potato starch with lithium perchlorate (LiClO4) as dopant salt and glycerol as plasticizer. Transport properties of the electrolytes are investigated using electrical impedance spectroscopy (EIS). By applying a method proposed by Arof et al. which was found to be suitable for both Arrhenius and Vogel–Tammann–Fulcher (VTF) type of electrolytes, the number density (n), diffusion coefficient (D), and mobility (μ) of ions are found to be influenced by the concentration of glycerol. From ion and electron transference number analysis, it is verified that ions are the main charge carriers. Linear sweep voltammetry (LSV) verifies the suitability of the most conductive electrolyte to be employed in the carbon-based symmetric electrical double-layer capacitor (EDLC) fabrication. The EDLC has been tested using the galvanostatic charge–discharge and cyclic voltammetry (CV) techniques. The specific capacitance (Csp) of the electrode using CV at a sweep rate of 2 mV s−1 is found to be 61.58 F g−1. The EDLC has been tested for 1000 charge–discharge cycles with the highest Csp value of 28.04 F g−1.

Keywords

Methyl cellulose–starch blend Polymer electrolyte Lithium perchlorate Transport properties Electrical double-layer capacitor 

Notes

Funding information

The authors would like to thank the Universiti Teknologi PETRONAS for supporting this work through YUTP grant (grant no. 015LC0-048) and Ministry of Education for Fundamental Research Grant Scheme (FRGS/1/2018/STG07/UNIKL/02/8).

References

  1. 1.
    Das S, Ghosh A (2017) Solid polymer electrolyte based on PVDF-HFP and ionic liquid embedded with TiO2 nanoparticle for electric double layer capacitor (EDLC) application. J Electrochem Soc 164:F1348–F1353CrossRefGoogle Scholar
  2. 2.
    De Kruif C, Tuinier R (2001) Polysaccharide protein interactions. Food Hydrocoll 15:555–563CrossRefGoogle Scholar
  3. 3.
    Elgadir MA, Akanda MJH, Ferdosh S, Mehrnoush A, Karim AA, Noda T, Sarker MZI (2012) Mixed biopolymer systems based on starch. Molecules 17:584–597CrossRefGoogle Scholar
  4. 4.
    Rajendran S, Mahendran O, Krishnaveni K (2003) Effect of CeO2 on conductivity of PMMA/PEO polymer blend electrolytes. J New Mater Electrochem Syst 6:25–28Google Scholar
  5. 5.
    Yusof YM, Kadir MFZ (2016) Electrochemical characterizations and the effect of glycerol in biopolymer electrolytes based on methylcellulose-potato starch blend. Mol Cryst Liq Cryst 627:220–233CrossRefGoogle Scholar
  6. 6.
    Shuhaimi NEA, Teo LP, Woo HJ, Majid SR, Arof AK (2012) Electrical double-layer capacitors with plasticized polymer electrolyte based on methyl cellulose. Polym Bull 69:807–826CrossRefGoogle Scholar
  7. 7.
    Yusof YM, Majid A, Kasmani M, Illias HA, Kadir MFZ (2014) The effect of plasticization on conductivity and other properties of starch/chitosan blend biopolymer electrolyte incorporated with ammonium iodide. Mol Cryst Liq Cryst 603:73–88CrossRefGoogle Scholar
  8. 8.
    Tuhin MO, Rahman N, Haque M, Khan RA, Dafader N, Islam R, Nurnabi M, Tonny W (2012) Modification of mechanical and thermal property of chitosan-starch blend films. Radiat Phys Chem 81:1659–1688CrossRefGoogle Scholar
  9. 9.
    Shukur M, Ithnin R, Kadir MFZ (2014) Electrical characterization of corn starch-LiOAc electrolytes and application in electrochemical double layer capacitor. Electrochim Acta 136:204–216CrossRefGoogle Scholar
  10. 10.
    Noor S, Ahmad A, Talib I, Rahman M (2011) Effect of ZnO nanoparticles filler concentration on the properties of PEO-ENR50-LiCF3SO3 solid polymeric electrolyte. Ionics 17:451–456CrossRefGoogle Scholar
  11. 11.
    Salunkhe RR, Tang J, Kamachi Y, Nakato T, Kim JH, Yamauchi Y (2015) Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework. ACS Nano 23:6288–6296CrossRefGoogle Scholar
  12. 12.
    Wang C, Wallace GG (2015) Flexible electrodes and electrolytes for energy storage. Electrochim Acta 175:87–95CrossRefGoogle Scholar
  13. 13.
    Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl Mater Interfaces 5:2188–2196CrossRefGoogle Scholar
  14. 14.
    Duraisamy N, Numan A, Fatin SO, Ramesh K, Ramesh S (2016) Facile sonochemical synthesis of nanostructured NiO with different particle sizes and its electrochemical properties for supercapacitor application. J Colloid Interface Sci 471:136–144CrossRefGoogle Scholar
  15. 15.
    Yusof YM (2017) Characteristics of corn starch/chitosan blend green polymer electrolytes complexed with ammonium iodide and its application in energy devices. PhD Dissertation, University of MalayaGoogle Scholar
  16. 16.
    Arof A, Shuhaimi N, Alias N, Kufian M, Majid S (2010) Application of chitosan/iota-carrageenan polymer electrolytes in electrical double layer capacitor (EDLC). J Solid State Electrochem 14:2145–2152CrossRefGoogle Scholar
  17. 17.
    Burke A, Yilmaz E, Hasirci N, Yilmaz O (2002) Iron (III) ion removal from solution through adsorption on chitosan. J Appl Polym Sci 84:1185–1192CrossRefGoogle Scholar
  18. 18.
    Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16:1856–1867CrossRefGoogle Scholar
  19. 19.
    Rice MJ, Roth WL (1972) Ionic transport in super ionic conductors: a theoretical model. J Solid State Chem 4:294–310CrossRefGoogle Scholar
  20. 20.
    Wagner JB, Wagner CJ (1957) Electrical conductivity measurements on cuprous halides. J Chem Phys 26:1597–1601CrossRefGoogle Scholar
  21. 21.
    Samsudin AS, Khairul WM, Isa MIN (2012) Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes. J Non-Cryst Solids 358:1104–1112CrossRefGoogle Scholar
  22. 22.
    Malathi J, Kumaravadivel M, Brahmanandhan GM, Hema M, Baskaran R, Selvasekarapandian S (2010) Structural, thermal and electrical properties of PVA-LiCF3SO3 polymer electrolyte. J Non-Cryst Solids 356:2277–2281CrossRefGoogle Scholar
  23. 23.
    Stephan AM, Thirunakaran R, Renganathan NG, Sundaram V, Pitchumani G, Muniyandi N, Gangadharan R, Ramamoorthy P (1999) A study on polymer blend electrolyte based on PVC/PMMA with lithium salt. J Power Sources 81–82:752CrossRefGoogle Scholar
  24. 24.
    Kartha SA (2013) A preparation of B2O3-Li2O-MO (M = Pb, Zn) glass thin films and study of thin properties. Dissertation, Mahatma Gandhi UniversityGoogle Scholar
  25. 25.
    Hema M, Selvasekarapandian S, Sakunthala A, Arunkumar D, Nithya H (2008) Structural, vibrational and electrical characterization of PVA-NH4Br polymer electrolyte system. Physica B 403:2740–2747CrossRefGoogle Scholar
  26. 26.
    Kim DW, Kim YR, Park JK, Moon SI (1998) Electrical properties of the plasticized polymer electrolytes based on acrylonitrile-methyl methacrylate copolymers. Solid State Ionics 106:329–337CrossRefGoogle Scholar
  27. 27.
    Selvasekarapandian S, Baskaran R, Hema M (2005) Complex AC impedance, transference number and vibrational spectroscopy studies of proton conducting PVAc–NH4SCN polymer electrolytes. Physica B 357:412–419CrossRefGoogle Scholar
  28. 28.
    Khiar AS, Arof AK (2010) Conductivity studies of starch-based polymer electrolytes. Ionics 16:123–129CrossRefGoogle Scholar
  29. 29.
    Richardson S, Gorton L (2003) Characterisation of the substituent distribution in starch and cellulose derivatives. Anal Chim Acta 497:27–65CrossRefGoogle Scholar
  30. 30.
    Fadzallah IA, Noor IM, Careem MA, Arof AK (2016) Investigation of transport properties of chitosan-based electrolytes utilizing impedance spectroscopy. Ionics 22:1635–1645CrossRefGoogle Scholar
  31. 31.
    Noor ISM (2016) Characterization and transport properties of PVA–LiBOB based polymer electrolytes with application in dye sensitized solar cells, PhD Dissertation, University of MalayaGoogle Scholar
  32. 32.
    Shamsuddin L, Noor LM, Albinsson I, Mellander BE, Arof AK (2017) Perovskite solar cells using polymer electrolytes. Mol Cryst Liq Cryst 655:181–194CrossRefGoogle Scholar
  33. 33.
    Shukur MF, Ithnin R, Kadir MFZ (2014) Electrical properties of proton conducting solid biopolymer electrolytes based on starch–chitosan blend. Ionics 20:977–999CrossRefGoogle Scholar
  34. 34.
    Kufian MZ, Aziz MF, Shukur MF, Rahim AS, Ariffin NE, Shuhaimi NEA, Majid SR, Yahya R, Arof AK (2012) PMMA-LiBOB gel electrolyte for application in lithium ion batteries. Solid State Ionics 208:36–42CrossRefGoogle Scholar
  35. 35.
    Nadimicherla R, Kalla R, Muchakayala R, Guo X (2015) Effect of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO: KI). Solid State Ionics 278:260–267CrossRefGoogle Scholar
  36. 36.
    Hu X, Muchakayala R, Song S, Wang J, Chen J, Tan M (2018) Synthesis and optimization of new polymeric ionic liquid poly(diallydimethylammonium) bis(trifluoromethane sulfonyl)imde based gel electrolyte films. Int J Hydrog Energy 43:3741–3749CrossRefGoogle Scholar
  37. 37.
    Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi S (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide) (PEO)/poly (vinyl pyrrolidone) (PVP) blend polymer. Electrochim Acta 235:210–222CrossRefGoogle Scholar
  38. 38.
    Woo HJ, Majid SR, Arof AK (2011) Transference number and structural analysis of proton conducting polymer electrolyte based on poly(ε-caprolactone). Mater Res Innov 15:S49–S54CrossRefGoogle Scholar
  39. 39.
    Kadir MFZ, Arof AK (2011) Application of PVA-chitosan blend polymer electrolyte membrane in electrical double layer capacitor. Mater Res Innov 15:S217–S220CrossRefGoogle Scholar
  40. 40.
    Pandey GP, Hashmi SA (2013) Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors. J Mater Chem A 1:3372–3378CrossRefGoogle Scholar
  41. 41.
    Muchakayala R, Song S, Wang J, Faa Y, Bengeppagari M, Chen J, Tan M (2018) Development and supercapacitor application of ionic liquid-incorporated gel polymer electrolyte films. J Ind Eng Chem 59:79–89CrossRefGoogle Scholar
  42. 42.
    Nasibi M, Golozar MA, Rashed G (2012) Nano zirconium oxide/carbon black as a new electrode material for electrochemical double layer capacitors. J Power Sources 206:108–110CrossRefGoogle Scholar
  43. 43.
    Wang X, Li W, Wang X, Zhang J, Sun L, Gao C, Shang J, Hu Y, Zhu Q (2017) Electrochemical properties of NiCoO2 synthesized by hydrothermal method. RSC Adv 7:50753–50759CrossRefGoogle Scholar
  44. 44.
    Liew C-W, Ramesh S (2015) Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes. Carbohydr Polym 124:222–228CrossRefGoogle Scholar
  45. 45.
    Bandaranayake CM, Weerasinghe SS, Vidanapathirana KP, Perera KS (2015) A cyclic voltammetry study of a gel polymer electrolyte based redox-capacitor. Sri Lankan J Phys 7:1–11Google Scholar
  46. 46.
    Cui H, Zhu G, Liu X, Liu F, Xie Y, Yang C, Lin T, Gu H, Huang F (2015) Niobium nitride Nb4N5 as a new high-performance electrode material for supercapacitors. Adv Sci 2:1500126CrossRefGoogle Scholar
  47. 47.
    Ranaweera CK, Kahol PK, Ghimire M, Mishra SR, Gupta RK (2017) Orange-peel-derived carbon: designing sustainable and high-performance supercapacitor electrodes. C 3:1–17Google Scholar
  48. 48.
    Yang Y, Ruan G, Xiang C, Wang G, Tour JM (2014) Flexible three-dimensional nanoporous metal-based energy devices. J Am Chem Soc 136:6187–6190CrossRefGoogle Scholar
  49. 49.
    Arof AK, Kufian MZ, Shukur MF, Aziz MF, Abdelrahman AE, Majid SR (2012) Electrical double layer capacitor using poly(methyl methacrylate)-C4BO8Li gel polymer electrolyte and carbonaceous material from shells of mata kucing (Dimocarpus longan) fruit. Electrochim Acta 74:39–45CrossRefGoogle Scholar
  50. 50.
    Chen T, Dai L (2013) Carbon nanomaterials for high performance supercapacitors. Mater Today 16:272–280CrossRefGoogle Scholar
  51. 51.
    Teoh KH, Lim C-S, Liew C-W, Ramesh S, Ramesh S (2015) Electric double-layer capacitors with corn starch-based biopolymer electrolytes incorporating silica as filler. Ionics 21:2061–2068CrossRefGoogle Scholar
  52. 52.
    Lim C-S, Teoh KH, Liew C-W, Ramesh S (2014) Electric double layer capacitor based on activated carbon electrode and biodegradable composite polymer electrolyte. Ionics 20:251–258CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Y. M. Yusof
    • 1
  • M. F. Shukur
    • 2
    Email author
  • M. H. Hamsan
    • 3
  • K. Jumbri
    • 2
  • M. F. Z. Kadir
    • 4
  1. 1.Universiti Kuala Lumpur Malaysian Institute of Chemical and Bio-Engineering TechnologyMalaccaMalaysia
  2. 2.Fundamental and Applied Sciences DepartmentUniversiti Teknologi PETRONASSeri IskandarMalaysia
  3. 3.Institute of Graduate StudiesUniversity of MalayaKuala LumpurMalaysia
  4. 4.Centre for Foundation Studies in ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations