pp 1–10 | Cite as

Core-shell structure LiNi1/3Mn1/3Co1/3O2@ ultrathin δ-MnO2 nanoflakes cathode material with high electrochemical performance for lithium-ion batteries

  • Gang Sun
  • Chenxiao Jia
  • Jianning Zhang
  • Liyin Hou
  • Zhipeng Ma
  • Guangjie ShaoEmail author
  • Zhen-bo WangEmail author
Original Paper


Due to the high energy density and low cost, LiNi1/3Co1/3Mn1/3O2 is wildly explored as a promising cathode material for lithium-ion batteries. However, this material suffers from the destruction of surface structure in the electrolyte and the reacting of electrode with the electrolyte during cycles in highly voltage. Herein, we rationally designed core-shell nanostructure LiNi1/3Mn1/3Co1/3O2@ ultrathin δ-MnO2 nanoflakes cathode material with excellent capacity retention and rate capacity by a liquid-phase precipitation method. The unique ultrathin δ-MnO2 nanoflakes shell nanostructure plays a key role in effectively improving rate performance and cycle life of LiNi1/3Co1/3Mn1/3O2. The electrode with the coating amount of 3 wt% exhibits excellent cycle performance and superior rate capacity compared with bare electrode. The δ-MnO2 nanoflakes-coated layer can react with Li+ during cycling and convert to spinel phase, resulting in a reversibly de/lithiation coating layer to improve its specific capacity compared with other inactive coating layer, and the spinel phase can also provide a three-dimensional lithium ions diffusion channels and thus promote lithium ions diffusion. Judging from the discussion, it can be concluded that the role of δ-MnO2-nanoflakes coating layer not only acts as a protective layer to impede the electrode directly contact with electrolyte but also accelerates lithium ions diffusion and improve its specific capacity.


Cathode materials Ultrathin δ-MnO2 nanosheets Core-shell nanostructures Lithium-ion batteries 


Funding information

This work was financially supported by the National Natural Science Foundation of China 51674221 and National Natural Science Foundation of China 51704261 and the Natural Science Foundation of Hebei Province B2018203330 and Natural Science Foundation of Hebei Province B2018203360.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11581_2019_3095_MOESM1_ESM.doc (3.5 mb)
ESM 1 (DOC 3623 kb)


  1. 1.
    Ibrahim H, Ilinca A, Perron J (2008) Energy storage systems—characteristics and comparisons. Renew Sust Energ Rev 12:1221–1250CrossRefGoogle Scholar
  2. 2.
    Aricò AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRefGoogle Scholar
  3. 3.
    Yuksel I, Kaygusuz K (2011) Renewable energy sources for clean and sustainable energy policies in Turkey. Renew Sust Energ Rev 15:4132–4144CrossRefGoogle Scholar
  4. 4.
    Bilgen S, Kaygusuz K, Sari A (2004) Renewable energy for a clean and sustainable future. Energy Sources 26:1119–1129CrossRefGoogle Scholar
  5. 5.
    Chen Z, Ma Z, Song J, Wang L, Shao G (2016) Novel one-step synthesis of wool-ball-like Ni-carbon nanotubes composite cathodes with favorable electrocatalytic activity for hydrogen evolution reaction in alkaline solution. J Power Sources 324:86–96CrossRefGoogle Scholar
  6. 6.
    Yi T-F, Zhu Y-R, Tao W, Luo S, Xie Y, Li X-F (2018) Recent advances in the research of MLi2Ti6O14 (M= 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. J Power Sources 399:26–41CrossRefGoogle Scholar
  7. 7.
    Han X, Gui X, Yi T-F, Li Y, Yue C (2018) Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries. Curr Opinion Solid State Mater Sci 22:109–126CrossRefGoogle Scholar
  8. 8.
    Yang W, Yang W, Sun B, Di S, Yan K, Wang G, Shao G (2018) Mixed lithium oxynitride/oxysulfide as an interphase protective layer to stabilize lithium anodes for high-performance lithium–sulfur batteries. ACS Appl Mater Interfaces 10:39695–39704CrossRefGoogle Scholar
  9. 9.
    Yang W, Yang W, Dong L, Gao X, Wang G, Shao G (2019) Enabling immobilization and conversion of polysulfides through a nitrogen-doped carbon nanotubes/ultrathin MoS 2 nanosheet core–shell architecture for lithium–sulfur batteries. J Mater Chem A 7:13103–13112Google Scholar
  10. 10.
    Yang W, Yang W, Zhang F, Wang G, Shao G (2018) Hierarchical interconnected expanded graphitic ribbons embedded with amorphous carbon: an advanced carbon nanostructure for superior lithium and sodium storage. Small 14:1802221CrossRefGoogle Scholar
  11. 11.
    Song A, Cao L, Yang W, Li Y, Qin X, Shao G (2018) Uniform multilayer graphene-coated iron and iron-carbide as oxygen reduction catalyst. ACS Sustain Chem Eng 6:4890–4898. CrossRefGoogle Scholar
  12. 12.
    Whittingham MS (2004) Lithium batteries and cathode materials. Cheminform 35:4271CrossRefGoogle Scholar
  13. 13.
    Van EJ, Wieland JL, Eskes H, Kuiper P, Sawatzky GA, de Groot FM, Turner TS (1991) Electronic structure of CoO, Li-doped CoO, and LiCoO2. Phys Rev B Condens Matter 44:6090CrossRefGoogle Scholar
  14. 14.
    Auvergniot J, Cassel A, Ledeuil JB, Viallet V, Seznec V, Dedryvère R (2017) Interface stability of argyrodite Li6PS5Cl towards LiCoO2, LiNi1/3Co1/3Mn1/3O2 and LiMn2O4 in bulk all-solid-state batteries. Chem Mater 29:3883–3890CrossRefGoogle Scholar
  15. 15.
    Kim D, Shim HC, Yun TG, Hyun S, Han SM (2016) High throughput combinatorial analysis of mechanical and electrochemical properties of Li[NixCoyMnz]O2 cathode. Extreme Mech Lett 9:439–448Google Scholar
  16. 16.
    Manthiram A, Song B, Li W (2016) A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Mater 6:125–139CrossRefGoogle Scholar
  17. 17.
    Lee MH, Kang YJ, Myung ST, Sun YK (2004) Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochim Acta 50:939–948CrossRefGoogle Scholar
  18. 18.
    Shaju KM, Bruce PG (2006) Macroporous Li (Ni1/3Co1/3Mn1/3)O2: a high-power and high-energy cathode for rechargeable lithium batteries. Adv Mater 18:2330–2334Google Scholar
  19. 19.
    Goodenough JB, Kim Y (2009) Challenges for rechargeable Li batteries. Chem Mater 22:587–603Google Scholar
  20. 20.
    Sun G, Yin X, Yang W, Song A, Jia C, Yang W, Du Q, Ma Z, Shao G (2017) The effect of cation mixing controlled by thermal treatment duration on the electrochemical stability of lithium transition-metal oxides. Phys Chem Chem Phys 19:29886–29894CrossRefGoogle Scholar
  21. 21.
    Sun G, Yin X, Yang W, Zhang J, Du Q, Ma Z, Shao G, Wang Z-B (2018) Synergistic effects of ion doping and surface-modifying for lithium transition-metal oxide: synthesis and characterization of La2O3-modified LiNi1/3Co1/3Mn1/3O2. Electrochim Acta 272:11–21CrossRefGoogle Scholar
  22. 22.
    Shaju KM, Rao GVS, Chowdari BVR (2004) Influence of Li-ion kinetics in the cathodic performance of layered Li(Ni1/3Co1/3Mn1/3)O2. J Electrochem Soc 151:A1324–A1332CrossRefGoogle Scholar
  23. 23.
    Luo X, Wang X, Liao L, Wang X, Gamboa S, Sebastian PJ (2006) Effects of synthesis conditions on the structural and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via the hydroxide co-precipitation method LIB SCITECH. J Power Sources 161:601–605CrossRefGoogle Scholar
  24. 24.
    Deb A, Bergmann U, Cramer SP, Cairns EJ (2005) In situ x-ray absorption spectroscopic study of the Li[Ni1∕3Co1∕3Mn1∕3]O2 cathode material. J Appl Phys 97:1CrossRefGoogle Scholar
  25. 25.
    Myung S-T, Lee K-S, Yoon C S, Sun Y-K, Amine K, Yashiro H (2010) Effect of AlF3 coating on thermal behavior of chemically Delithiated Li0.35[Ni1/3Co1/3Mn1/3]O2. J Phys Chem C 114:4710–4718Google Scholar
  26. 26.
    Zheng J, Liu T, Hu Z, Wei Y, Song X, Ren Y, Wang W, Rao M, Lin Y, Chen Z (2016) Tuning of thermal stability in layered Li(NixMnyCoz)O2. J Am Chem Soc 138:13326–13334CrossRefGoogle Scholar
  27. 27.
    Uchida S, Zettsu N, Hirata K, Kami K, Teshima K (2016) High-voltage capabilities of ultra-thin Nb2O5 nanosheet coated LiNi1/3Co1/3Mn1/3O2 cathodes. RSC Adv 6:67514–67519CrossRefGoogle Scholar
  28. 28.
    Han Z, Yu J, Zhan H, Liu X, Zhou Y (2014) Sb2O3-modified LiNi1/3Co1/3Mn1/3O2 material with enhanced thermal safety and electrochemical property. J Power Sources 254:106–111CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Wang Z-B, Yu F-D, Que L-F, Wang M-J, Xia Y-F, Xue Y, Wu J (2017) Studies on stability and capacity for long-life cycle performance of Li(Ni0.5Co0.2Mn0.3)O2 by Mo modification for lithium-ion battery. J Power Sources 358:1–12CrossRefGoogle Scholar
  30. 30.
    Hu SK, Cheng GH, Cheng MY, Hwang BJ, Santhanam R (2009) Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J Power Sources 188:564–569CrossRefGoogle Scholar
  31. 31.
    Wang J, Du C, Yan C, He X, Song B, Yin G, Zuo P, Cheng X (2015) Al2O3 coated concentration-gradient Li [Ni0.73Co0.12Mn0.15]O2 cathode material by freeze drying for long-life lithium ion batteries. Electrochim Acta 174:1185–1191Google Scholar
  32. 32.
    Ke D, Xie H, Hu G, Peng Z, Cao Y, Fan Y (2016) Enhancing the thermal and upper voltage performance of Ni-rich cathode material by a homogeneous and facile coating method: spray-drying-coating nano-Al2O3. ACS Appl Mater Interfaces 8:17713CrossRefGoogle Scholar
  33. 33.
    Zhou Y, Lee Y, Sun H, Wallas JM, George SM, Xie M (2017) Coating solution for high-voltage cathode: AlF3 atomic layer deposition for free-standing LiCoO2 electrodes with high energy density and excellent flexibility. ACS Appl Mater Interfaces 9:9614–9619CrossRefGoogle Scholar
  34. 34.
    Yang C, Zhang X, Huang M, Huang J, Fang Z (2017) Preparation and rate capability of carbon coated LiNi1/3Co1/3Mn1/3O2 as cathode material in lithium ion batteries. ACS Appl Mater Interfaces 9:12408–12415Google Scholar
  35. 35.
    Wang JH, Wang Y, Guo YZ, Ren ZY, Liu CW (2013) Effect of heat-treatment on the surface structure and electrochemical behavior of AlPO4-coated LiNi1/3Co1/3Mn1/3O2 cathode materials. J Mater Chem A 1:4879–4884CrossRefGoogle Scholar
  36. 36.
    Su Y, Cui S, Zhuo Z, Yang W, Wang X, Pan F (2015) Enhancing the high-voltage cycling performance of LiNi0.5Mn0.3Co0.2O2 by retarding its interfacial reaction with electrolyte by atomic layer deposited Al2O3. Zeitschrift Für Physik C Part Fields 7:25105–25112Google Scholar
  37. 37.
    Guo X, Cong LN, Zhao Q, Tai LH, Wu XL, Zhang JP, Wang RS, Xie HM, Sun LQ (2015) Enhancement of electrochemical performance of LiNi1/3Co1/3Mn1/3O2 by surface modification with MnO 2. J Alloys Compd 651:12–18CrossRefGoogle Scholar
  38. 38.
    Ma Z, Shao G, Fan Y, Wang G, Song J, Shen D (2016) Construction of hierarchical α-MnO2 nanowires@ ultrathin δ-MnO2 nanosheets core-shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes. ACS Appl Mater Interfaces 8:9050–9058CrossRefGoogle Scholar
  39. 39.
    Ma Z, Shao G, Fan Y, Feng M, Shen D, Wang H (2017) Fabrication of high-performance all-solid-state asymmetric supercapacitors based on stable α-MnO2@NiCo2O4 core-shell heterostructure and 3D-nanocage N-doped porous carbon. ACS Sustain Chem Eng 5:4856–4868CrossRefGoogle Scholar
  40. 40.
    Ma Z, Jing F, Fan Y, Hou L, Su L, Fan L, Shao G (2019) High-stability MnOx nanowires@C@MnOx nanosheet core–shell heterostructure pseudocapacitance electrode based on reversible phase transition mechanism. Small 15:1900862CrossRefGoogle Scholar
  41. 41.
    Cheng F, Su Y, Liang J, Tao Z, Chen J (2014) MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media†. Chem Mater 22:898–905CrossRefGoogle Scholar
  42. 42.
    Yin X, Dong H, Sun G, Yang W, Song A, Du Q, Su L, Shao G (2017) Ni–MoS2 composite coatings as efficient hydrogen evolution reaction catalysts in alkaline solution. Int J Hydrog Energy 42:11262–11269Google Scholar
  43. 43.
    Dose W, Donne S (2011) Kinetic analysis of Î3-MnO thermal treatment. J Therm Anal Calorim 105:113–122CrossRefGoogle Scholar
  44. 44.
    Xia H, Lai MO, Lu L (2010) Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J Mater Chem 20:6896–6902CrossRefGoogle Scholar
  45. 45.
    Tu F, Wu T, Liu S, Jin G, Pan C (2013) Facile fabrication of MnO2 nanorod/graphene hybrid as cathode materials for lithium batteries. Electrochim Acta 106:406–410CrossRefGoogle Scholar
  46. 46.
    Brenet J, Faber P (1979) Conductivity measurements on pure and mixed metal dioxides ☆. J Power Sources 4:203–213CrossRefGoogle Scholar
  47. 47.
    Lee J, Newnham C, Tye F (1973) Energetics of water desorption from a γ-manganese dioxide. J Colloid Interface Sci 42:372–380Google Scholar
  48. 48.
    Ren D, Shen Y, Yang Y, Shen L, Levin BD, Yu Y, Muller DA, Abruña HcD (2017) Systematic optimization of battery materials: key parameter optimization for the scalable synthesis of uniform, high-energy, and high stability LiNi0.6Mn0.2Co0.2O2 cathode material for lithium-ion batteries. Acs Appl Mater Interfaces 9:35811–35819Google Scholar
  49. 49.
    Li X, Liu J, Banis MN, Lushington A, Li R, Cai M, Sun X (2014) Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ Sci 7:768–778CrossRefGoogle Scholar
  50. 50.
    Reed J, Ceder G, Ven AVD (2001) Layered-to-spinel phase transition in LiMnO. Electrochem Solid-State Lett 4:A78CrossRefGoogle Scholar
  51. 51.
    Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer DR, Zhang JG (2013) Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7:760–767CrossRefGoogle Scholar
  52. 52.
    Wang L, Zhao J, He X, Gao J, Li J, Wan C, Jiang C (2012) Electrochemical impedance spectroscopy (EIS) study of LiNi1/3Co1/3Mn1/3O2 for Li-ion. Batteries Int J Electrochem Sci 7:345–353Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Environmental and Chemical Engineering, State key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina
  2. 2.MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations