Advertisement

Ionics

pp 1–14 | Cite as

Synthesis, crystal structure, physicochemical characterization, and dielectric properties of a new organic chloride salt, (C3H7N6)Cl•0.5H2O

  • Radhia MesbehEmail author
  • Besma Hamdi
  • Ridha Zouari
Original Paper
  • 11 Downloads

Abstract

The crystallization of (C3H7N6)Cl•0.5H2O is made by slow evaporation at room temperature. It was found to crystallize in the monoclinic system, C2/m space group, with the following lattice parameters: a = 12.4124 (5) Å, b = 17.6339 (7) Å, c = 7.1193 (3) Å, β = 115.057 (2)°, Z = 4, and V = 1411.61 (10) Å3. The cohesion in (C3H7N6)Cl•0.5H2O is provided by three types of hydrogen bonds, O–H…Cl, N–H…O, N–H…Cl, and N–H… N. Furthermore, the room temperature IR and Raman spectra of the title compound were recorded and analyzed on the basis of literature data. The optical study was also investigated by UV-Vis absorption. The differential scanning calorimetric (DSC) and dielectric study of this compound has been measured. The percentages of hydrogen bonding interactions are analyzed by fingerprint plots of Hirshfeld surface.

Keywords

Crystal structure Dielectric measurements Vibrational study Optical properties Differential scanning calorimetric (DSC) Hirshfeld surface 

Notes

References

  1. 1.
    Fernandez-Liencres MP, Navarro A, Lopez-Gonzalez JJ, Fernandez-Gomez M, Tomkinson J, Kearley GJ (2001) Measurement and ab initio modeling of the inelastic neutron scattering of solid melamine. Chem Phys 266:1–17CrossRefGoogle Scholar
  2. 2.
    Ouahab L (1997) Organic/Inorganic Supramolecular Assemblies and Synergy between Physical Properties. Chem Mater 9:1909–1926CrossRefGoogle Scholar
  3. 3.
    Ishihara T, Takahashi J, Goto T (1990) Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4. Phys Rev B 42:11099–11107CrossRefGoogle Scholar
  4. 4.
    Lassoued MS, Abdelbaky MSM, Ben Soltan W, lassoued A, Ammar S, Gadri A, Ben Salah A, Garcia Granda S (2018) Structure characterization, photoluminescence and dielectric properties of a new hybrid compound containing chlorate anions of zincate (II). J Mol Struct 1158:221–228CrossRefGoogle Scholar
  5. 5.
    Takada J, Awaji H, Koshioka M, Nakajima A, Nevin WA (1992) Organic–inorganic multilayers: a new concept of optoelectronic material. Appl Phys Lett 61:2184–2186CrossRefGoogle Scholar
  6. 6.
    Mitzi DB, Field CA, Schlesinger Z, Laibowitz RB Transport(1995) Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. J Solid State Chem 114:159–163CrossRefGoogle Scholar
  7. 7.
    Gomez-Romero P, Chojak M, Cuentas-Gallegos K, Asensio JA, Kulesza PJ, Casan-Pastor N, Lira-Cantu M (2003) Hybrid organic–inorganic nanocomposite materials for application in solid state electrochemical supercapacitors. Electrochem Commun 5:149–153CrossRefGoogle Scholar
  8. 8.
    Baklouti Y, chaari N, Feki H, Chniba-Boudjada N, Zouari F (2015) Crystal structure, vibrational studies, optical properties and DFT calculations of 2-amino-5-diethyl-aminopentanium tetrachlorocadmate (II). Spectrochim Acta A Mol Biomol Spectrosc 136:397–404CrossRefGoogle Scholar
  9. 9.
    Hajlaoui S, Chaabane I, Lhoste J, Bulou A, Guidara K (2016) Structural characterization, vibrational spectroscopy accomplished with DFT calculation, thermal and dielectric behaviors in a new organic-inorganic tertrapropylammonium aquapentachlorostannate dihydrate compound. J Alloys Compd 679:302–315CrossRefGoogle Scholar
  10. 10.
    Shapiro A, Landee CP, Turnbull MM, Jornet J, Deumal M, Novoa JJ, Robb MA, Lewis W (2007) Synthesis, structure, and magnetic properties of an antiferromagnetic spin-ladder complex: Bis(2,3-dimethylpyridinium) tetrabromocuprate. J Am Chem Soc 129:952–959CrossRefGoogle Scholar
  11. 11.
    Saparov B, Mitzi DB (2016) Organic–inorganic perovskites: structural versatility for functional materials design. Chem Rev 116:4558–4596CrossRefGoogle Scholar
  12. 12.
    Lee KW, Lee CH, Lee CE (1996) Phase transitions and critical dynamics in (C18H37NH3)2SnCl6. J Chem Phys 104:6964–6966CrossRefGoogle Scholar
  13. 13.
    Wang S, Mitzi DB, Field CA, Guloy A (1995) Synthesis and characterization of [NH2C(I):NH2]3MI5 (M = Sn, Pb): stereochemical activity in divalent in and lead halides containing single .ltbbrac.110.rtbbrac. perovskite sheets. J Am Chem Soc 117:5297–5302CrossRefGoogle Scholar
  14. 14.
    Mitzi DB, Liang K, Wang S (1998) Synthesis and characterization of [NH2C(I)NH2]2ASnI5with A = iodoformamidinium or formamidinium: the chemistry of cyanamide and tin(II) iodide in concentrated aqueous hydriodic acid solutions. Inorg Chem 37:321–327CrossRefGoogle Scholar
  15. 15.
    SHELXS97, Sheldrick GM (1986) Program for crystal structure solution. University of Göttingen, GermanyGoogle Scholar
  16. 16.
    SHELXL97, Sheldrick GM (1986) Program for crystal structure solution. University of Göttingen, GermanyGoogle Scholar
  17. 17.
    Brandenburg K, Berndt M (2001) Diamond version 2.1, crystal impact. BonnGoogle Scholar
  18. 18.
    Wolff SK, Grimwood DJ, Mckinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) Crystal Explorer 3.0. University of Western AustraliaGoogle Scholar
  19. 19.
    Zhang J, Kang Y, Wen YH, Li ZJ, Quin YY, Yao YG (2004) Acta Crystallogr E60:462Google Scholar
  20. 20.
    Marchewka MK, Janczak J, Debrus S, Baran J, Ratajczak H (2003) Crystal structure, vibrational spectra and nonlinear optical properties of tetrakis(2,4,6-triamino-1,3,5-triazin-1-ium) bis(selenate) trihydrate crystal. Solid State Sci 5:643–652CrossRefGoogle Scholar
  21. 21.
    Tanbug R, Kirschbaum K, Pinkerton A (1999) J Chem Crystallogr 29:45–55CrossRefGoogle Scholar
  22. 22.
    Scoponi M, Polo E, Pradella F, Bertolasi V, Carassiti V, Goberti P (1992) J Chem Soc Perkin Trans 2:1127CrossRefGoogle Scholar
  23. 23.
    Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Patterns in hydrogen bonding: functionality and graph set analysis in crystals. J Angew Chem Int Ed Engl 34:1555–1573CrossRefGoogle Scholar
  24. 24.
    Saber Lassoued M, Abdelbaky MSM, Mendoza Merono R, Gadri A, Ammar S, Salah AB, García-Granda S (2017) Structure, spectroscopic measurement, thermal studies and optical properties of a new hybrid compound of aquapentachloroindoidate(III) complex. J Mol Struct 1142:73–79CrossRefGoogle Scholar
  25. 25.
    Luo YH, Wu GG, Mao SL, Sun BW (2013) Complexation of different metals with a novel N-donor bridging receptor and Hirshfeld surfaces analysis. Inorg Chim Acta 397:1–9CrossRefGoogle Scholar
  26. 26.
    Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 4:378–392CrossRefGoogle Scholar
  27. 27.
    Larkin PJ, Makowski MP, Colthoup NB (1999) The form of the normal modes of s-triazine: infrared and Raman spectral analysis and ab initio force field calculations. Spectrochim Acta A 55:1011–1020CrossRefGoogle Scholar
  28. 28.
    Wang YL, Mebel AM, Wu CJ, Chen YT, Lin CE, Jiang JC (1997) IR spectroscopy and theoretical vibrational calculation of the melamine molecule. J Chem Soc Faraday Trans 93:3445–3451CrossRefGoogle Scholar
  29. 29.
    Arjunan V, Kalaivani M, Marchewka MK, Mohan S (2013) Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations. Spectrochim Acta A Mol Biomol Spectrosc 107:90–101CrossRefGoogle Scholar
  30. 30.
    Krishnan P, Gayathri K, Rajakumar PR, Jayaramakrishnan V, Gunasekaran S, Anbalagan G (2014) Studies on crystal growth, vibrational, optical, thermal and dielectric properties of new organic nonlinear optical crystal: Bis (2,3-dimethoxy-10-oxostrychnidinium) phthalate nonahydrate single crystal. Spectrochim Acta A Mol Biomol Spectrosc 131:114–124CrossRefGoogle Scholar
  31. 31.
    Meier RJ, Tiller A, Vanhommerig SAM (1995) Molecular modeling of melamine-formaldehyde resins. 2. Vibrational spectra of methylolmelamines and bridged methylolmelamines. J Phys Chem 99:5457–5464CrossRefGoogle Scholar
  32. 32.
    Jones WJ, Orville-Thomas WJ (1959) The infra-red spectrum and structure of melamine. Trans Faraday Soc 55:203CrossRefGoogle Scholar
  33. 33.
    Larkin PJ, Makowski MP, Colthup NB, Food LA (1998) Vibrational analysis of some important group frequencies of melamine derivatives containing methoxymethyl, and carbamate substituents: mechanical coupling of substituent vibrations with triazine ring modes. Vib Spectrosc 17:53–72CrossRefGoogle Scholar
  34. 34.
    Jones WJ, Orville-Thomas WJ (1959) The infra-red spectrum and structure of dicyandiamide. Trans Faraday Soc 55:193CrossRefGoogle Scholar
  35. 35.
    Ben Rhaiem A, Guidara K, Gargouri M, Daoud A (2005) Electrical properties and equivalent circuit of trimethylammonium monobromodichloromercurate. J Alloys Compd 392:68–71CrossRefGoogle Scholar
  36. 36.
    Venkaterwarlu P, Laha A, Krupanidhi SB (2005) AC properties of laser ablated La-modified lead titanate thin films. Thin Solid Films 474:1–9CrossRefGoogle Scholar
  37. 37.
    Tareev B (1975) Physics of dielectric materials. Mir Publishers, MoscowGoogle Scholar
  38. 38.
    Kurien S, Mathew J, Sebastian S, Potty SN, George KC (2006) Dielectric behavior and ac electrical conductivity of nanocrystalline nickel aluminate. Mater Chem Phys 98:470–476CrossRefGoogle Scholar
  39. 39.
    Anantha PS, Harihanan K (2005) Conductivity analysis and dielectric relaxation behaviour of NaNO3–Al2O3 composites. Mater Sci Eng B 121:12–19CrossRefGoogle Scholar
  40. 40.
    Das PS, Chakraborty PK, Behera B, Choudhary RNP (2007) Electrical properties of Li2BiV5O15 ceramics. Phys B 395:98–103CrossRefGoogle Scholar
  41. 41.
    Behera B, Nayak P, Choudhary RNP (2008) Structural and impedance properties of KBa2V5O15 ceramics. Mater Res Bull 43:401–410CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire des Sciences des Matériaux et d’EnvironnementFaculté des Sciences de SfaxSfaxTunisia

Personalised recommendations