pp 1–14 | Cite as

One-dimensional mesoporous Co3O4 tubules for enhanced performance supercapacitor and enzymeless glucose sensing

  • Li ZhangEmail author
  • Hong Zhang
  • Xikun Chu
  • Xinru Han
Original Paper


One-dimensional hollow Co3O4 tubules have been synthesized by using a template method followed by a simple thermal annealing treatment. The obtained hollow Co3O4 nanomaterial displays one-dimensional architecture with a highly mesoporous nature and hollow interiors, leading to better electrolyte/electrode contact and more efficient transport pathways. Our experimental results demonstrate that the hollow Co3O4 nanostructures exhibit enhanced electrochemical performance for charge storage and enzymeless glucose sensing applications. Supercapacitor electrodes employing mesoporous hollow Co3O4 tubules exhibit specific capacitance of 326 F g−1 at a current density of 1 A g−1, a high capacity retention of 73.6% at 10 A g−1, and a long stable cycling performance of retaining ~ 91.6% after 5000 cycles. Compared with the bulk Co3O4, it also has good sensing ability for glucose with high sensitivity of 994.6 μA mM−1 cm−2 and 369.7 μA mM−1 cm−2 for the lower and higher concentration of glucose, fast response time of 5 s, detection limit as low as 0.84 μM, good selectivity, stability, and reproducibility. These results show that the hollow Co3O4 tubules is a versatile material for various applications.


Hollow Co3O4 tubules Mesoporous Template method Supercapacitor Enzymeless glucose sensor 


Funding information

The authors thank the National Natural Science Foundation of China (21001004), the Natural Science Foundation of the Anhui Higher Education Institutions (grant no. KJ2016A277), the Innovation Funds of Anhui Normal University (2018XJJ-741805), Ph.D. Research Startup Funds of Anhui Normal University (2018XJJ-751862), and the Key Laboratory of Functional Molecular Solids, Ministry of Education and Anhui Laboratory of Molecule-Based Materials (16005).

Supplementary material

11581_2019_3087_MOESM1_ESM.doc (3.9 mb)
ESM 1 (DOC 3968 kb)


  1. 1.
    Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652CrossRefGoogle Scholar
  2. 2.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  3. 3.
    Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRefGoogle Scholar
  4. 4.
    Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRefGoogle Scholar
  5. 5.
    Liu S, Hui KS, Hui KN (2016) Flower-like copper cobaltite nanosheets on graphite paper as high-performance supercapacitor electrodes and enzymeless glucose sensors. ACS Appl Mater Interfaces 8:3258–3267CrossRefGoogle Scholar
  6. 6.
    Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H, Wang LH, Huang W, Chen P (2012) 3D-graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213CrossRefGoogle Scholar
  7. 7.
    Zhu J, Zhang S, Wang D (2017) Facile fabrication of coal-derived activated carbon/Co3O4 nanocomposites with superior electrochemical performance. Ionics 23:1927–1931CrossRefGoogle Scholar
  8. 8.
    Ding X, Zhu J, Hu G, Zhang S (2019) Core-shell structured CoNi2S4@polydopamine nanocomposites as advanced electrode materials for supercapacitors. Ionics 25:897–901CrossRefGoogle Scholar
  9. 9.
    Xia C, Alshareef HN (2015) Self-templating scheme for the synthesis of nanostructured transition-metal chalcogenide electrodes for capacitive energy storage. Chem Mater 27:4661–4668CrossRefGoogle Scholar
  10. 10.
    Dai X, Chen D, Fan HQ, Zhong Y, Chang L, Shao HB, Wang JM, Zhang JQ, Cao CN (2015) Ni(OH)2/NiO/Ni composite nanotube arrays for high-performance supercapacitors. Electrochim Acta 154:128–135CrossRefGoogle Scholar
  11. 11.
    Xu R, Lin J, Wu J, Huang M, Fan L, Chen H, He X, Wang Y, Xu Z (2018) Two-step hydrothermal synthesis of NiCo2S4/Co9S8 nanorods on nickel foam for high energy density asymmetric supercapacitors. Appl Surf Sci 434:861–870CrossRefGoogle Scholar
  12. 12.
    Ross SA, Gulve EA, Wang M (2004) Chemistry and biochemistry of type 2 diabetes. Chem Rev 104:1255–1282CrossRefGoogle Scholar
  13. 13.
    Zhong GX, Zhang WX, Sun YM, Wei YQ, Lei Y, Peng HP, Liu AL, Chen YZ, Lin XH (2015) A nonenzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode. Sensors Actuators B Chem 212:72–77CrossRefGoogle Scholar
  14. 14.
    Manikandan A, Veeramani V, Chen SM, Madhu R, Lee L, Medina H, Chen CW, Hung WH, Wang ZM, Shen GZ, Chueh YL (2016) Low-temperature chemical synthesis of three-dimensional hierarchical Ni(OH)2-coated Ni microflower for high-performance enzyme-free glucose sensor. J Phys Chem C 120:25752–25759CrossRefGoogle Scholar
  15. 15.
    Singh AK, Sarkar D, Khan GG, Mandal K (2014) Hydrogenated NiO nanoblock architecture for high performance pseudocapacitor. ACS Appl Mater Interfaces 6:4684–4692CrossRefGoogle Scholar
  16. 16.
    Wang G, Lu X, Zhai T, Ling Y, Wang H, Tong Y, Li Y (2012) Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors. Nanoscale 4:3123–3127CrossRefGoogle Scholar
  17. 17.
    Peng R, Wu N, Huang Y, Luo Y, Yu P, Zhuang L (2016) Large-scale synthesis of metal-ion-doped manganese dioxide for enhanced electrochemical performance. ACS Appl Mater Interfaces 8:8474–8480CrossRefGoogle Scholar
  18. 18.
    Han L, Shi J, Liu A (2017) Novel biotemplated MnO2 1D nanozyme with controllable peroxidase-like activity and unique catalytic mechanism and its application for glucose sensing. Sensors Actuators B Chem 252:919–926CrossRefGoogle Scholar
  19. 19.
    Liu M, Sun J (2014) In situ growth of monodisperse Fe3O4 nanoparticles on graphene as flexible paper for supercapacitor. J Mater Chem A 2:12068–12074CrossRefGoogle Scholar
  20. 20.
    Li XG, Wang ZK, Qiu YF, Pan QM, Hu PA (2015) 3D graphene/ZnO nanorods composite networks as supercapacitor electrodes. J Alloys Compd 620:31–37CrossRefGoogle Scholar
  21. 21.
    Raza W, Ahmad K (2018) A highly selective Fe@ZnO modified disposable screen printed electrode based non-enzymatic glucose sensor (SPE/Fe@ZnO). Mater Lett 212:231–234CrossRefGoogle Scholar
  22. 22.
    Mishra AK, Nayak AK, Das AK, Pradhan D (2018) Microwave-assisted solvothermal synthesis of cupric oxide nanostructures for high-performance supercapacitor. J Phys Chem C 122:11249–11261CrossRefGoogle Scholar
  23. 23.
    Yang J, Lin Q, Yin W, Jiang T, Zhao D, Jiang L (2017) A novel nonenzymatic glucose sensor based on functionalized PDDA-graphene/CuO nanocomposites. Sensors Actuators B Chem 253:1087–1095CrossRefGoogle Scholar
  24. 24.
    Qiu K, Lu Y, Cheng J, Yan H, Hou X, Zhang D, Lu M, Liu X, Luo Y (2015) Ultrathin mesoporous Co3O4 nanosheets on Ni foam for high-performance supercapacitors. Electrochim Acta 157:62–68CrossRefGoogle Scholar
  25. 25.
    Rajeshkhanna G, Umeshbabu E, Rao GR (2017) Charge storage, electrocatalytic and sensing activities of nest-like nanostructured Co3O4. J Colloid Interface Sci 487:20–30CrossRefGoogle Scholar
  26. 26.
    Chen T, Li XW, Qiu CC, Zhu WC, Ma HY, Chen SH, Meng O (2014) Electrochemical sensing of glucose by carbon cloth-supported Co3O4/PbO2 core-shell nanorod arrays. Biosens Bioelectron 53:200–206CrossRefGoogle Scholar
  27. 27.
    Du W, Liu R, Jiang Y, Lu Q, Fan Y, Gao F (2012) Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J Power Sources 227:101–105CrossRefGoogle Scholar
  28. 28.
    Wang D, Wang Q, Wang T (2011) Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors. Inorg Chem 50:6482–6492CrossRefGoogle Scholar
  29. 29.
    Yang L, Cheng S, Ding Y, Zhu X, Wang ZL, Liu M (2011) Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Lett 12:321–325CrossRefGoogle Scholar
  30. 30.
    Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26:542–548CrossRefGoogle Scholar
  31. 31.
    Meng T, Xu QQ, Wang ZH, Li YT, Gao ZM, Xing XY, Zhen T (2015) Rena Co3O4 nanorods with self-assembled nanoparticles in queue for supercapacitor. Electrochim Acta 180:104–111CrossRefGoogle Scholar
  32. 32.
    Wang Y, Lei Y, Li J, Gu L, Yuan H, Xiao D (2014) Synthesis of 3D-nanonet hollow structured Co3O4 for high capacity supercapacitor. ACS Appl Mater Interfaces 6:6739–6747CrossRefGoogle Scholar
  33. 33.
    Xuan L, Chen L, Yang Q, Chen W, Hou X, Jiang Y, Zhang Q, Yuan Y (2015) Engineering 2D multi-layer graphene-like Co3O4 thin sheets with vertically aligned nanosheets as basic building units for advanced pseudocapacitor materials. J Mater Chem A 3:17525–17533CrossRefGoogle Scholar
  34. 34.
    Jiang Y, Chen L, Zhang H, Zhang Q, Chen W, Zhu J, Song D (2016) Two-dimensional Co3O4 thin sheets assembled by 3D interconnected nanoflake array framework structures with enhanced supercapacitor performance derived from coordination complexes. Chem Eng J 292:1–12CrossRefGoogle Scholar
  35. 35.
    Ren X, Fan H, Ma J, Wang C, Zhang M, Zhao N (2018) Hierarchial Co3O4/PANI hollow nanocages: synthesis and application for electrode materials of supercapacitors. Appl Surf Sci 441:194–203CrossRefGoogle Scholar
  36. 36.
    Lou XW, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019CrossRefGoogle Scholar
  37. 37.
    Yu L, Zhang L, Wu HB, Lou XW (2014) Formation of NixCo3-xS4 hollow nanoprisms with enhanced pseudocapacitive properties. Angew Chem Int Ed 53:3711–3714CrossRefGoogle Scholar
  38. 38.
    Zhao XB, Ji XH, Zhang YH, Zhu TJ, Tu JP, Zhang XB (2005) Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl Phys Lett 86:062111. 28–062111. 30Google Scholar
  39. 39.
    Song T, Cheng H, Choi H, Lee J-H, Han H, Lee DH, Yoo DS, Kwon MS, Choi JM, Doo SG, Chang H, Xiao J, Huang Y, Park WI, Chung YC, Kim H, Rogers JA, Paik U (2012) Si/Ge double-layered nanotube array as a lithium ion battery anode. ACS Nano 6:303–309CrossRefGoogle Scholar
  40. 40.
    Zhang G, Xia BY, Xiao C, Yu L, Wang X, Xie Y, Lou XW(D) (2013) General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. Angew Chem Int Ed 52:8643–8647CrossRefGoogle Scholar
  41. 41.
    Chen YM, Li Z, Lou XW(D) (2015) General formation of MxCo3-xS4 (M = Ni, Mn, Zn) hollow tubular structures for hybrid supercapacitors. Angew Chem Int Ed 54:10521–10524CrossRefGoogle Scholar
  42. 42.
    Li X, Zhu Q, Tong S, Wang W, Song W (2009) Self-assembled microstructure of carbon nanotubes for enzymeless glucose sensor. Sensors Actuators B Chem 136:444–450CrossRefGoogle Scholar
  43. 43.
    Zhang G, Lou XW (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25:976–979CrossRefGoogle Scholar
  44. 44.
    Zhou H, Li D, Hibino M, Honma I (2005) Mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities. Angew Chem Int Ed 44:797–802CrossRefGoogle Scholar
  45. 45.
    Padmanathan N, Shao H, Razeeb KM (2018) Multifunctional nickel phosphate nano/microflakes 3D electrode for electrochemical energy storage, nonenzymatic glucose, and sweat pH sensors. ACS Appl Mater Interfaces 10:8599–8610CrossRefGoogle Scholar
  46. 46.
    Qian HS, Yu SH, Luo LB, Gong JY, Fei LF, Liu XM (2006) Synthesis of uniform Te@carbon-rich composite nanocables with photoluminescence properties and carbonaceous nanofibers by the hydrothermal carbonization of glucose. Chem Mater 18:2102–2108CrossRefGoogle Scholar
  47. 47.
    Lu HB, Wang SM, Zhao L, Li JC, Dong BH, Xua ZX (2011) Hierarchical ZnO microarchitectures assembled by ultrathin nanosheets: hydrothermal synthesis and enhanced photocatalytic activity. J Mater Chem 21:4228–4234CrossRefGoogle Scholar
  48. 48.
    Xu H, Xia C, Wang S, Han F, Akbari MK, Hai Z, Zhuiykov S (2018) Electrochemical non-enzymatic glucose sensor based on hierarchical 3D Co3O4/Ni heterostructure electrode for pushing sensitivity boundary to a new limit. Sensors Actuators B Chem 267:93–103CrossRefGoogle Scholar
  49. 49.
    Wang L, Zhang Y, Xie Y, Yu J, Yang H, Miao L, Song Y (2017) Three-dimensional macroporous carbon/hierarchical Co3O4 nanoclusters for nonenzymatic electrochemical glucose sensor. Appl Surf Sci 402:47–52CrossRefGoogle Scholar
  50. 50.
    Sun HT, Sun X, Hu T, Yu MP, Lu FY, Lian J (2014) Graphene-wrapped mesoporous cobalt oxide hollow spheres anode for high-rate and long-life lithium ion batteries. J Phys Chem C 118:2263–2272CrossRefGoogle Scholar
  51. 51.
    Yan DL, Zhang H, Chen L, Zhu GS, Li SC, Xu HR, Yu AB (2014) Biomorphic synthesis of mesoporous Co3O4 microtubules and their pseudocapacitive performance. ACS Appl Mater Interfaces 6:15632–15637CrossRefGoogle Scholar
  52. 52.
    Mondal C, Ganguly M, Manna PK, Yusuf S, Pal T (2013) Fabrication of porous β-Co(OH)2 architecture at room temperature: a high performance supercapacitor. Langmuir 29:9179–9187CrossRefGoogle Scholar
  53. 53.
    Guo D, Luo YZ, Yu XY, Li QH, Wang TH (2014) High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8:174–182CrossRefGoogle Scholar
  54. 54.
    Song D, Zhu J, Li J, Pu T, Huang B, Zhao C, Xie L, Chen L (2017) Free-standing two-dimensional mesoporous ZnCo2O4 thin sheets consisting of 3D ultrathin nanoflake array frameworks for high performance asymmetric supercapacitor. Electrochim Acta 257:455–464CrossRefGoogle Scholar
  55. 55.
    Zhu J, Song D, Pu T, Li J, Huang B, Wang W, Zhao C, Xie L, Chen L (2018) Two-dimensional porous ZnCo2O4 thin sheets assembled by 3D nanoflake array with enhanced performance for aqueous asymmetric supercapacitor. Chem Eng J 336:679–689CrossRefGoogle Scholar
  56. 56.
    Meher SK, Rao GR (2011) Ultralayered Co3O4 for high-performance supercapacitor applications. J Phys Chem C 115:15646–15654CrossRefGoogle Scholar
  57. 57.
    Rakhi RB, Chen W, Cha D, Alshareef HN (2011) High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes. J Mater Chem 21:16197–16204CrossRefGoogle Scholar
  58. 58.
    Sivakumar M, Madhu R, Chen SM, Veeramani V, Manikandan A, Hung WH, Miyamoto N, Chueh YL (2016) Low-temperature chemical synthesis of CoWO4 nanospheres for sensitive nonenzymatic glucose sensor. J Phys Chem C 120:17024–17028CrossRefGoogle Scholar
  59. 59.
    Su Y, Luo B, Zhang JZ (2016) Controllable cobalt oxide/Au hierarchically nanostructured electrode for nonenzymatic glucose sensing. Anal Chem 88:1617–1624CrossRefGoogle Scholar
  60. 60.
    Madhu R, Veeramani V, Chen SM, Manikandan A, Lo AY, Chueh YL (2015) Honeycomb-like porous carbon-cobalt oxide nanocomposite for high-performance enzymeless glucose sensor and supercapacitor applications. ACS Appl Mater Interfaces 7:15812–15820CrossRefGoogle Scholar
  61. 61.
    Fan S, Zhao M, Ding L, Liang J, Chen J, Li Y, Chen S (2016) Synthesis of 3D hierarchical porous Co3O4 film by eggshell membrane for non-enzymatic glucose detection. J Electroanal Chem 775:52–57CrossRefGoogle Scholar
  62. 62.
    Hou C, Xu Q, Yin L, Hu X (2012) Metal-organic framework templated synthesis of Co3O4 nanoparticles for direct glucose and H2O2 detection. Analyst 137:5803–5808CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Materials Science, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, The Key Laboratory of Functional Molecular Solids, Ministry of Education and Anhui Laboratory of Molecule-Based MaterialsAnhui Normal UniversityWuhuPeople’s Republic of China

Personalised recommendations