Advertisement

Ionics

pp 1–5 | Cite as

Cobalt sulfide @ CNT-CNF for high-performance asymmetric supercapacitor

  • Yongsheng ZhouEmail author
  • Jiang Jin
  • Xuanren Zhou
  • Fang Liu
  • Ping Zhou
  • Yingchun Zhu
  • Bingshe Xu
Short Communication

Abstract

A cobalt sulfide encapsulated within carbon nanotube-carbon nanofiber (Co9S8@CNT-CNF) nanohybrid electrode is designed and prepared. The physicochemical characterization such as X-ray diffraction (XRD) and electron microscopy revealed the formation of Co9S8@CNT-CNF. The specific capacitance of Co9S8@CNT-CNF is 1656 F g−1 at 1 A g−1 with good electrochemical cycle stability (92.6% up to 10,000 cycles). The Co9S8@CNT-CNF electrode exhibits a maximum power density of 8.83 kW kg−1 with an energy density of 65 Wh kg−1, while a maximum energy density of 175 Wh kg−1 is attained at a power density of 463 W kg−1. This impressive electrochemical performance of the Co9S8@CNT-CNF composite indicated significant potential for application in high-power and energy-storage devices.

Keywords

Carbon nanotube Carbon nanofiber Cobalt sulfide Nanocomposite Supercapacitor 

Notes

Funding information

We gratefully acknowledge the financial support by the Natural Science Foundation of Anhui Province (KJ2018A0534), the research fund of Anhui Science and Technology University (ZRC2014402), and the innovation and entrepreneurship training program for college students (2505160307).

Supplementary material

11581_2019_3085_MOESM1_ESM.docx (142 kb)
ESM 1 (DOCX 142 kb)

References

  1. 1.
    Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763CrossRefGoogle Scholar
  2. 2.
    Zhou YS, Jin P, Zhou YT, Zhu YC (2017) Carbon nanospheres hanging on carbon nanotubes: a hierarchical three-dimensional carbon nanostructure for high-performance supercapacitors. J Mater Chem A 5:16595–16599CrossRefGoogle Scholar
  3. 3.
    Yu XY, Yu L, Lou XW (2016) Metal sulfide hollow nanostructures for electrochemical energy storage. Adv Energy Mater 6:1501333CrossRefGoogle Scholar
  4. 4.
    Zhou YS, Zhu YC, Xue DF, Xu BS (2018) A nitrogen-doped 3D open-structured graphite nanofiber matrix for high-performance supercapacitors. J Mater Chem A 6:14065–14068CrossRefGoogle Scholar
  5. 5.
    Gao XC, Shen YJ, Xing LL, Wang Q, Xue XY (2016) High electrochemical performance of hierarchical CoMoS3.13/SnO2 nanocomposites as lithium-sulfur battery cathode. Mater Lett 183:413–416CrossRefGoogle Scholar
  6. 6.
    Evlashin SA, Maksimov YM, Dyakonov PV, Pilevsky AA, Maslakov KI, Mankelevich YA, Voronina EN, Vavilov SV, Pavlov AA, Zenova EV, Akhatov IS, Suetin NV (2019) N-doped carbon nanowalls for power sources. Sci Rep 9(1):6716CrossRefGoogle Scholar
  7. 7.
    Bao SJ, Li CM, Guo CX, Qiao Y (2008) Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors. J Power Sources 180:676–681CrossRefGoogle Scholar
  8. 8.
    Zhou YS, Zhu YC, Xu BS, Zhang XJ (2019) High electroactive material loading on a carbon nanotube/carbon nanofiber as advanced free-standing electrode for asymmetric supercapacitors. Chem Commun 55:4083–4086CrossRefGoogle Scholar
  9. 9.
    Wan HZ, Ji X, Jiang JJ, Yu JW, Miao L, Zhang L, Bie SW, Chen HC, Ruan YJ (2013) Hydrothermal synthesis of cobalt sulfide nanotubes: the size control and its application in supercapacitors. J Power Sources 243:396–402CrossRefGoogle Scholar
  10. 10.
    Xing JC, Zhu YL, Zhou QW, Zheng XD, Jiao QJ (2014) Fabrication and shape evolution of CoS2 octahedrons for application in supercapacitors. Electrochim Acta 136:550–556CrossRefGoogle Scholar
  11. 11.
    Islam N, Warzywoda J, Fan ZY (2018) Edge-oriented graphene on carbon nanofiber for high-frequency supercapacitors. Nano-Micro Lett 10:9CrossRefGoogle Scholar
  12. 12.
    Ranaweera CK, Wang Z, Alqurashi E, Kahol PK, Dvornic PR, Gupta BK, Ramasamy K, Mohite AD, Gupta G, Gupta R (2016) Highly stable hollow bifunctional cobalt sulfides for flexible supercapacitors and hydrogen evolution. J Mater Chem A 4:9014–9018CrossRefGoogle Scholar
  13. 13.
    Wang QH, Jiao LF, Du HM, Yang JQ, Huan QN, Peng WX, Si YC, Wang YJ, Yuan HT (2011) Facile synthesis and superior supercapacitor performances of three-dimensional cobalt sulfide hierarchitectures. Cryst Eng Comm 13:6960–6963CrossRefGoogle Scholar
  14. 14.
    Zhang L, Wu HB, Lou XW (2012) Unusual CoS2 ellipsoids with anisotropic tube-like cavities and their application in supercapacitors. Chem Commun 48:6912–6914CrossRefGoogle Scholar
  15. 15.
    Wei BB, Liang HF, Qi ZB, Zhang DF, Shen H, Hua WS, Wang ZC (2019) Construction of 3D Si@Ti@TiN thin film arrays for aqueous symmetric supercapacitors. Chem Commun 55:1402–1405CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yongsheng Zhou
    • 1
    • 2
    Email author
  • Jiang Jin
    • 3
  • Xuanren Zhou
    • 4
  • Fang Liu
    • 1
  • Ping Zhou
    • 1
  • Yingchun Zhu
    • 2
    • 5
  • Bingshe Xu
    • 6
  1. 1.College of Chemistry and Materials EngineeringAnhui Science and Technology UniversityBengbuPeople’s Republic of China
  2. 2.Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  3. 3.Henan University of Science and TechnologyLuoyangPeople’s Republic of China
  4. 4.Huizhou BYD Electronic Co., Ltd.HuizhouPeople’s Republic of China
  5. 5.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingPeople’s Republic of China
  6. 6.Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of EducationTaiyuan University of TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations