Advertisement

Ionics

pp 1–8 | Cite as

Molecular dynamics simulation of ionic transport and thermodynamic properties in β-PbF2

  • J. D. LópezEmail author
  • J. E. Diosa
  • H. Correa
Original Paper
  • 7 Downloads

Abstract

In this work, a study through the use of molecular dynamics of the ionic conduction processes in lead fluoride in its beta phase, as well as the variation of the specific heat capacity with the temperature increase at constant pressure, is presented. In order to carry out the molecular dynamic simulations, the classic simulation package DL_POLY and the well-known interatomic interaction potentials of Walker et al. were used. This research shows how the calculated ionic conductivity is in agreement with different reported experimental measurements in the non-superionic region; however, this finding presents discrepancies for the superionic region. The molecular dynamics calculations for the specific heat cp in this material show high coincidence in the non-superionic region (300–600 K). Simulations by molecular dynamics show that fluorine ions behave as a liquid flowing through the structure of fixed ions of lead.

Keywords

Molecular dynamics Superionic conductors Ionic conductivity Lead fluoride 

Notes

Acknowledgments

This work was supported in part by COLCIENCIAS, Universidad del Valle and Universidad del Quindío.

References

  1. 1.
    Kennedy JH, Miles R, Hunter J (1973) Solid electrolyte properties and crystal forms of lead fluoride. J Electrochem Soc 129:1441–1446CrossRefGoogle Scholar
  2. 2.
    Pérez Benito R, Khaneft D, O'Connor C, Capozza L, Diefenbach J, Gläser B, Ma Y, Maas FE, Rodríguez Piñeiro D (2016) Design and performance of a lead fluoride detector as a luminosity monitor. Nucl Instrum Meth A 826:6–14.  https://doi.org/10.1016/j.nima.2016.04.071 CrossRefGoogle Scholar
  3. 3.
    Kurosawa S, Yokota Y, Yanagida T, Yoshikawa A (2013) Optical and scintillation property of Ce, Ho and Eu-doped PbF2. Radiat Meas 55:120–123.  https://doi.org/10.1016/j.radmeas.2013.03.005 CrossRefGoogle Scholar
  4. 4.
    Portella KF, Rattmann KR, De Souza GP, Garcia CM, Cantao MP, Muccillo R (2000) Characterization of α - β PbF2 phase transition by several techniques. J Mater Sci 35:3263–3268.  https://doi.org/10.1023/A:100481922 CrossRefGoogle Scholar
  5. 5.
    Walker AB, Dixon M, Gillan MJ (1982) Computer simulation of ionic disorder in high-temperature PbF2. J Phys C Solid State Phys 15:4061–4073.  https://doi.org/10.1088/0022-3719/15/19/007 CrossRefGoogle Scholar
  6. 6.
    Hayakawa S, Osaka A, Nishioka H, Matsumoto S, Miura Y (2000) Structure of lead oxyfluorosilicate glasses: X-ray photoelectron and nuclear magnetic resonance spectroscopy and molecular dynamics simulation. J Non-Cryst Solids 272:103–118.  https://doi.org/10.1016/S0022-3093(00)00233-7 CrossRefGoogle Scholar
  7. 7.
    Silva MAP, Monteil A, Messaddeq Y, Ribeiro SJL (2002) Molecular dynamics simulations on devitrification: the PbF2 case. J Chem Phys 117:5366–5372.  https://doi.org/10.1063/1.1501119 CrossRefGoogle Scholar
  8. 8.
    Zhang N, Yang B, Huo J, Qi W, Zhang X, Ruan X, Bao J, He G (2019) Hydration structures of vanadium/oxovanadium cations in the presence of sulfuric acid: a molecular dynamics simulation study. Chem Eng Sci 195:683–692.  https://doi.org/10.1016/j.ces.2018.10.014 CrossRefGoogle Scholar
  9. 9.
    Zhang N, Huo J, Yang B, Ruan X, Zhang X, Bao J, Qi W, He G (2018) Understanding of imidazolium group hydration and polymer structure for hydroxide anion conduction in hydrated imidazolium-g-PPO membrane by molecular dynamics simulations. Chem Eng Sci 192:1167–1176.  https://doi.org/10.1016/j.ces.2018.08.051 CrossRefGoogle Scholar
  10. 10.
    Cazorla C, Sagotra AK (2018) High-pressure phase diagram and superionicity of alkaline earth metal difluorides. J Phys Chem C 122:1267–1279.  https://doi.org/10.1021/acs.jpcc.7b10975 CrossRefGoogle Scholar
  11. 11.
    Nelson JR, Needs RJ, Pickard CJ (2017) High-pressure phases of group-II difluorides: polymorphism and superionicity. Phys Rev B 95:054118.  https://doi.org/10.1103/PhysRevB.95.054118 CrossRefGoogle Scholar
  12. 12.
    Monteil A, Chaussedent S, Guichaoua D (2014) Molecular dynamics simulation of phase transitions in crystalline lead (II) fluoride. Mater Chem Phys 146:170–174.  https://doi.org/10.1016/j.matchemphys.2014.03.016 CrossRefGoogle Scholar
  13. 13.
    Cherguia Y, Nehaoua N, Telghemti B, Guemid S, Deraddji NE, Belkhir H, Mekki DE (2010) The structural properties of PbF2 by molecular dynamics. Eur Phys J Appl Phys 51:20502p1–20502p7.  https://doi.org/10.1051/epjap/2010096 Google Scholar
  14. 14.
    Dantelle G, Mortier M, Monteil A, Chaussedent S, Silva MAP (2007) Molecular dynamics simulation study of erbium induced devitrification in vitreous PbF2. J Chem Phys 127:094509.  https://doi.org/10.1063/1.2771546 CrossRefGoogle Scholar
  15. 15.
    Catlow CRA, Norgett MJ (1973) Shell model calculations of the energies of formation of point defects in alkaline earth fluorides. J Phys C Solid State Phys 6:1325–1339CrossRefGoogle Scholar
  16. 16.
    Todorov IT, Smith W, Trachenko K, Dove MT (2006) DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J Mater Chem 16:1911–1918.  https://doi.org/10.1039/B517931A CrossRefGoogle Scholar
  17. 17.
    Young CW, Todorov IT (2018) DL_ANALYSER notation for atomic interactions (DANAI): a natural annotation system for molecular interactions, using ethanoic acid liquid as a test case. Molecules 23:p36.  https://doi.org/10.3390/molecules23010036 CrossRefGoogle Scholar
  18. 18.
    Lv X, Xu Z, Li J, Chen J, Liu Q (2016) Molecular dynamics investigation on structural and transport properties of Na3AlF6–Al2O3 molten salt. J Mol Liquids 221:26–32.  https://doi.org/10.1016/j.molliq.2016.05.064 CrossRefGoogle Scholar
  19. 19.
    Rajabpour A, Akizi FY, Heyhat MM, Gordiz K (2013) Molecular dynamics simulation of the specific heat capacity of water-Cu nanofluids. Int Nano Lett 3:58.  https://doi.org/10.1186/2228-5326-3-58
  20. 20.
    Habasaki J, Leon C, Ngai K (2017) Dynamics of glassy, crystalline and liquid ionic conductors. Springer Verlag, Berlin.  https://doi.org/10.1007/978-3-319-42391-3 CrossRefGoogle Scholar
  21. 21.
    Benz R (1975) Electrical conductivity of PbF2. Z Physik Chem (NF) 95:25–31CrossRefGoogle Scholar
  22. 22.
    Gordon RE, Strange JH (1978) NMR relaxation and self-diffusion in PbF2. J Phys C Solid State Phys 11:3213–3223.  https://doi.org/10.1088/0022-3719/11/15/020 CrossRefGoogle Scholar
  23. 23.
    Carr VM, Chadwick AV, Saghafian R (1978) The electrical conductivity of PbF2 and SrCl2 crystals at high temperatures. J Phys C Solid State Phys 11:L637–L641.  https://doi.org/10.1088/0022-3719/11/15/006 CrossRefGoogle Scholar
  24. 24.
    Volodkovich LM, Petrov GS, Vecher RA, Vecher AA (1985) Heat capacity and enthalpy of phase transitions of α- and β- modifications of lead fluoride. Thermochim Acta 88:497–500.  https://doi.org/10.1016/0040-6031(85)85474-5 CrossRefGoogle Scholar
  25. 25.
    Melchionna S, Ciccotti G, Holian BL (1993) Hoover NPT dynamics for system varying in shape and size. Mol Phys 78:533–544.  https://doi.org/10.1080/00268979300100371 CrossRefGoogle Scholar
  26. 26.
    He X, Zhu Y, Mo Y (2017) Origin of fast ion diffusion in super-ionic conductors. Nat Commun 8:15893.  https://doi.org/10.1038/ncomms15893 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad del ValleCaliColombia
  2. 2.Centro de Excelencia en Nuevos Materiales (CENM)Universidad del ValleCaliColombia
  3. 3.Laboratorio de OptoelectrónicaUniversidad del QuindíoArmeniaColombia

Personalised recommendations