, Volume 25, Issue 7, pp 3493–3498 | Cite as

Graphene and diglyme assisted improved Al3+ ion storage in MoO3 nanorod: steps for high-performance aqueous aluminum-ion battery

  • Homen Lahan
  • Shyamal K. DasEmail author
Short Communication


An approach to improve the Al3+ ion storage capacity of MoO3 in aqueous electrolyte is illustrated here. Graphene as conductive additive and diglyme as electrolyte additive play a pivotal and synergistic role in the improvement. Graphene-MoO3 composite exhibits stable capacity of 160 mAh g−1 over 100 cycles in diglyme mixed aqueous electrolyte with v/v mixing ratio of 50:50, whereas it delivers a capacity of only 75 mAh g−1 at the 100th cycle in pristine aqueous electrolyte. Besides, pristine MoO3 also demonstrates improved stability in diglyme mixed aqueous electrolyte.


Aluminum-ion battery Diglyme Graphene Molybdenum trioxide 



This work is supported by Science and Engineering Research Board, Department of Science and Technology, Government of India (Grant No. YSS/2015/000765).

Supplementary material

11581_2019_3058_MOESM1_ESM.pdf (653 kb)
ESM 1 (PDF 652 kb)


  1. 1.
    Elia GA, Marquardt K, Hoeppner K, Fantini S, Lin R, Knipping E, Peters W, Drillet JF, Passerini S, Hahn R (2016) An overview and future perspectives of aluminum batteries. Adv Mater 28(35):7564–7579CrossRefGoogle Scholar
  2. 2.
    Das SK, Mahapatra S, Lahan H (2017) Aluminium-ion batteries: developments and challenges. J Mater Chem A 5:6347–6367CrossRefGoogle Scholar
  3. 3.
    Das SK (2018) Graphene: a cathode material of choice for aluminum-ion battery. Angew Chem Int Ed 57:16606–16617. CrossRefGoogle Scholar
  4. 4.
    Lin MC, Gong M, Lu B, Wu Y, Wang DY, Guan M, Angell M, Chen C, Yang J, Hwang BJ, Dai H (2015) An ultrafast rechargeable aluminum-ion battery. Nature 520:324–328CrossRefGoogle Scholar
  5. 5.
    Chen H, Xu H, Wang S, Huang T, Xi J, Cai S, Guo F, Xu Z, Gao W, Gao C (2017) Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci Adv 3:7233 (1-8)CrossRefGoogle Scholar
  6. 6.
    Jayaprakash N, Das SK, Archer LA (2011) The rechargeable aluminum-ion battery. Chem Commun 47:12610–12612CrossRefGoogle Scholar
  7. 7.
    Holleck GL (1972) The reduction of chlorine on carbon in AlCl3-KCl-NaCl melts. J Electrochem Soc 119:1158–1161CrossRefGoogle Scholar
  8. 8.
    Liu S, Pan GL, Li GR, Gao XP (2015) Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries. J Mater Chem A 3:959–962CrossRefGoogle Scholar
  9. 9.
    Liu S, Hu JJ, Yan NF, Pan GL, Li GR, Gao XP (2012) Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum-ion batteries. Energy Environ Sci 5:9743–9746CrossRefGoogle Scholar
  10. 10.
    He YJ, Peng JF, Chu W, Li YZ, Tong DG (2014) Black mesoporous anatase TiO2 nanoleaves: a high capacity and high rate anode for aqueous Al-ion batteries. J Mater Chem A 2:1721–1731CrossRefGoogle Scholar
  11. 11.
    Kazazi M, Abdollahi P, Mirzaei-Moghadam M (2017) High surface area TiO2 nanospheres as a high-rate anode material for aqueous aluminium-ion batteries. Solid State Ionics 300:32–37CrossRefGoogle Scholar
  12. 12.
    González JR, Nacimiento F, Cabello M, Alcántara R, Lavela P, Tirado JL (2016) Reversible intercalation of aluminium into vanadium pentoxide Xerogel for aqueous rechargeable batteries. RSC Adv 6:62157–62164CrossRefGoogle Scholar
  13. 13.
    Nacimiento F, Cabello M, Alcantara R, Lavela P, Tirado JL (2018) NASICON-type Na3V2(PO4)3 as a new positive electrode material for rechargeable aluminium battery. Electrochim Acta 260:798–804CrossRefGoogle Scholar
  14. 14.
    Liu Y, Sang S, Wu Q, Lu Z, Liu K, Liu H (2014) The electrochemical behavior of Cl assisted Al3+ insertion into titanium dioxide nanotube arrays in aqueous solution for aluminum-ion batteries. Electrochim Acta 143:340–346CrossRefGoogle Scholar
  15. 15.
    Sang S, Liu Y, Zhong W, Liu K, Liu H, Wu Q (2016) The electrochemical behavior of TiO2-NTAs electrode in H+ and Al3+ coexistent aqueous solution. Electrochim Acta 187:92–97CrossRefGoogle Scholar
  16. 16.
    Lahan H, Boruah R, Hazarika A, Das SK (2017) Anatase TiO2 as an anode material for rechargeable aluminium-ion batteries: graphene induced aluminium-ion storage phenomenon. J Phys Chem C 121:26241–26249CrossRefGoogle Scholar
  17. 17.
    Lahan H, Das SK (2018) An approach to improve the Al3+ ion intercalation in anatase TiO2 nanoparticle for aqueous aluminum-ion battery. Ionics 24:1855–1860CrossRefGoogle Scholar
  18. 18.
    Lahan H, Das SK (2018) Active role of inactive current collector in aqueous aluminium-ion battery. Ionics 24:2175–8180CrossRefGoogle Scholar
  19. 19.
    Lahan H, Das SK (2019) Al3+ ion intercalation in MoO3 for aqueous aluminium-ion battery. J Power Sources 413:134–138CrossRefGoogle Scholar
  20. 20.
    Jache B, Adelhelm P (2014) Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew Chem 126(38):10333–10337CrossRefGoogle Scholar
  21. 21.
    Goktas M, Bolli C, Berg EJ, Novák P, Pollok K, Langenhorst F, Roeder MV, Lenchuk O, Mollenhauer D, Adelhelm P (2018) Graphite as cointercalation electrode for sodium-ion batteries: electrode dynamics and the missing solid electrolyte interphase (SEI). Adv Ener Mater 8.
  22. 22.
    Wang J, Khoo E, Lee PS, Ma J (2008) Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. J Phys Chem C 112:14306–14312CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsTezpur UniversityTezpurIndia

Personalised recommendations