, Volume 25, Issue 9, pp 4285–4294 | Cite as

Activity of MWCNT sheets and effects of carbonaceous impurities toward the alkaline-based hydrogen evolution reaction

  • Ibrahim Mustafa
  • Rahmat Susantyoko
  • Aamna Alshehhi
  • Mona Bahman
  • Arwa Alshareif
  • Saif Almheiri
  • Faisal AlmarzooqiEmail author
Original Paper


Herein, we utilize freestanding sheets of multi-walled carbon nanotube (MWCNT), fabricated through a surface-engineered and controlled approach, to provide direct measurements of activities of MWCNT toward the hydrogen evolution reaction (HER). Since conventional fabrication methods of MWCNT materials can result in different carbonaceous residue contents (as reported in literature), the effect of carbonaceous impurities on the activity of MWCNT toward the HER becomes interesting (not previously recognized). Our results show that increasing amounts of carbonaceous impurities (in the form of carbon black additives) can initially increase the catalytic activity of MWCNT toward the HER, but will result in a lower electrochemical stability and lower activity at higher rates of charge transfer or longer times of charging, for which we propose an electrolytic transport mechanism, related to a debris-formation phenomenon occurring over carbonaceous impurities. The work suggests that carbonaceous impurities’ content should be accounted for during electrochemical studies of MWCNT toward the HER.


Multi-walled carbon nanotubes Electrolysis Hydrogen evolution reaction Electrocatalysis Buckypaper 



This publication is based upon work supported by the Khalifa University of Science and Technology under Award No. 8474000003. The authors acknowledge the Cooperative Agreement between the Masdar Institute of Science and Technology (Masdar Institute), Abu Dhabi, UAE and the Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. The authors acknowledge the support of Applied NanoStructured Solutions LLC, a Lockheed Martin Company, for providing the carbon nanostructured flakes.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    De Valladares MR (2017) Global trends and outlook for hydrogen. International Energy Agency. Accessed 8 Dec 2018
  2. 2.
    Zhao G, Rui K, Dou SX, Sun W (2018) Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv Funct Mater 28:1803291.
  3. 3.
    O’hayre R, Cha S-W, Prinz FB, Colella W (2016) Fuel cell fundamentals. John Wiley & Sons, HobokenCrossRefGoogle Scholar
  4. 4.
    Du P, Eisenberg R (2012) Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ Sci 5:6012–6021. CrossRefGoogle Scholar
  5. 5.
    Li DJ, Maiti UN, Lim J, Choi DS, Lee WJ, Oh Y, Lee GY, Kim SO (2014) Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett 14:1228–1233. CrossRefPubMedGoogle Scholar
  6. 6.
    Benck JD, Hellstern TR, Kibsgaard J, Chakthranont P, Jaramillo TF (2014) Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal 4:3957–3971. CrossRefGoogle Scholar
  7. 7.
    Seo B, Jung GY, Sa YJ, Jeong HY, Cheon JY, Lee JH, Kim HY, Kim JC, Shin HS, Kwak SK, Joo SH (2015) Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction. ACS Nano 9:3728–3739. CrossRefPubMedGoogle Scholar
  8. 8.
    Ting LRL, Deng Y, Ma L, Zhang YJ, Peterson AA, Yeo BS (2016) Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catal 6:861–867. CrossRefGoogle Scholar
  9. 9.
    Wu L, Wang X, Sun Y, Liu Y, Li J (2015) Flawed MoO2 belts transformed from MoO3 on a graphene template for the hydrogen evolution reaction. Nanoscale 7:7040–7044. CrossRefPubMedGoogle Scholar
  10. 10.
    Zhu X, Liu M, Liu Y, Chen R, Nie Z, Li J, Yao S (2016) Carbon-coated hollow mesoporous FeP microcubes: an efficient and stable electrocatalyst for hydrogen evolution. J Mater Chem A 4:8974–8977. CrossRefGoogle Scholar
  11. 11.
    Sun M, Liu H, Qu J, Li J (2016) Earth-rich transition metal phosphide for energy conversion and storage. Adv Energy Mater 6.
  12. 12.
    Callejas JF, Read CG, Popczun EJ, McEnaney JM, Schaak RE (2015) Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chem Mater 27:3769–3774. CrossRefGoogle Scholar
  13. 13.
    Liu M, Li J (2016) Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS Appl Mater Interfaces 8:2158–2165. CrossRefPubMedGoogle Scholar
  14. 14.
    Pu Z, Liu Q, Jiang P, Asiri AM, Obaid AY, Sun X (2014) CoP nanosheet arrays supported on a Ti plate: an efficient cathode for electrochemical hydrogen evolution. Chem Mater 26:4326–4329. CrossRefGoogle Scholar
  15. 15.
    Kukunuri S, Austeria PM, Sampath S (2016) Electrically conducting palladium selenide (Pd4Se, Pd17Se15, Pd7Se4) phases: synthesis and activity towards hydrogen evolution reaction. Chem Commun 52:206–209. CrossRefGoogle Scholar
  16. 16.
    Zhang H, Yang B, Wu X, Li Z, Lei L, Zhang X (2015) Polymorphic CoSe2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction. ACS Appl Mater Interfaces 7:1772–1779. CrossRefPubMedGoogle Scholar
  17. 17.
    Xiao M, Miao Y, Tian Y, Yan Y (2015) Synthesizing nanoparticles of Co-P-Se compounds as electrocatalysts for the hydrogen evolution reaction. Electrochim Acta 165:206–210. CrossRefGoogle Scholar
  18. 18.
    Liu Q, Shi J, Hu J, Asiri AM, Luo Y, Sun X (2015) CoSe2 nanowires array as a 3D electrode for highly efficient electrochemical hydrogen evolution. ACS Appl Mater Interfaces 7:3877–3881. CrossRefPubMedGoogle Scholar
  19. 19.
    Bai N, Li Q, Mao D, Li D, Dong H (2016) One-step electrodeposition of Co/CoP film on Ni foam for efficient hydrogen evolution in alkaline solution. ACS Appl Mater Interfaces 8:29400–29407. CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang X, Liang Y (2018) Nickel Hydr (oxy) oxide nanoparticles on metallic MoS2 nanosheets: a synergistic electrocatalyst for hydrogen evolution reaction. Adv Sci 5:1700644CrossRefGoogle Scholar
  21. 21.
    Weng Z, Liu W, Yin L-C, Fang R, Li M, Altman EI, Fan Q, Li F, Cheng HM, Wang H (2015) Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis. Nano Lett 15:7704–7710CrossRefPubMedGoogle Scholar
  22. 22.
    Feng J-X, Xu H, Dong Y-T, Lu XF, Tong YX, Li GR (2017) Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angew Chem Int Ed 56:2960–2964CrossRefGoogle Scholar
  23. 23.
    Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z (2015) Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun 6:6430CrossRefPubMedGoogle Scholar
  24. 24.
    Xing Z, Wang D, Li Q, Asiri AM, Sun X (2016) Self-standing Ni-WN heterostructure nanowires array: a highly efficient catalytic cathode for hydrogen evolution reaction in alkaline solution. Electrochim Acta 210:729–733CrossRefGoogle Scholar
  25. 25.
    Xing Z, Han C, Wang D, Li Q, Yang X (2017) Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS Catal 7:7131–7135. CrossRefGoogle Scholar
  26. 26.
    Zhang B, Liu J, Wang J, Ruan Y, Ji X, Xu K, Chen C, Wan H, Miao L, Jiang J (2017) Interface engineering: the Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 37:74–80. CrossRefGoogle Scholar
  27. 27.
    Yan X, Tian L, He M, Chen X (2015) Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett 15:6015–6021CrossRefPubMedGoogle Scholar
  28. 28.
    Wang Z, Du H, Liu Z et al (2018) Interface engineering of a CeO2–Cu3P nanoarray for efficient alkaline hydrogen evolution. Nanoscale 10:2213–2217. CrossRefPubMedGoogle Scholar
  29. 29.
    Zhu L, Lin H, Li Y, Liao F, Lifshitz Y, Sheng M, Lee ST, Shao M (2016) A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials. Nat Commun 7:12272. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang Z, Liu Z, Du G et al (2018) Ultrafine PtO2 nanoparticles coupled with a Co(OH)F nanowire array for enhanced hydrogen evolution. Chem Commun 54:810–813. CrossRefGoogle Scholar
  31. 31.
    Zhang R, Ren X, Hao S, Ge R, Liu Z, Asiri AM, Chen L, Zhang Q, Sun X (2018) Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis. J Mater Chem A 6:1985–1990. CrossRefGoogle Scholar
  32. 32.
    Gao M, Chen L, Zhang Z, Sun X, Zhang S (2018) Interface engineering of the Ni(OH)2–Ni3N nanoarray heterostructure for the alkaline hydrogen evolution reaction. J Mater Chem A 6:833–836. CrossRefGoogle Scholar
  33. 33.
    Xie L, Ren X, Liu Q, Cui G, Ge R, Asiri AM, Sun X, Zhang Q, Chen L (2018) A Ni(OH)2–PtO2 hybrid nanosheet array with ultralow Pt loading toward efficient and durable alkaline hydrogen evolution. J Mater Chem A 6:1967–1970. CrossRefGoogle Scholar
  34. 34.
    Mustafa I, Lopez I, Younes H, Susantyoko RA, al-Rub RA, Almheiri S (2017) Fabrication of freestanding sheets of multiwalled carbon nanotubes (buckypapers) for vanadium redox flow batteries and effects of fabrication variables on electrochemical performance. Electrochim Acta 230:222–235. CrossRefGoogle Scholar
  35. 35.
    Britto PJ, Santhanam KSV, Rubio A, Alonso JA, Ajayan PM (1999) Improved charge transfer at carbon nanotube electrodes. Adv Mater 11:154–157.<154::AID-ADMA154>3.0.CO;2-B CrossRefGoogle Scholar
  36. 36.
    Kostov MK, Santiso EE, George AM, Gubbins KE, Nardelli MB (2005) Dissociation of water on defective carbon substrates. Phys Rev Lett 95:136105. CrossRefPubMedGoogle Scholar
  37. 37.
    Guo ZH, Yan XH, Yang YR, Deng YX, Lu D, Wang DL (2008) Dissociation of water molecules induced by charged-defective carbon nanotubes. J Phys Chem C 112:4618–4621. CrossRefGoogle Scholar
  38. 38.
    Seehra MS, Bollineni S (2009) Nanocarbon boosts energy-efficient hydrogen production in carbon-assisted water electrolysis. Int J Hydrog Energy 34:6078–6084. CrossRefGoogle Scholar
  39. 39.
    Liu Y, Yu H, Quan X, Chen S, Zhao H, Zhang Y (2014) Efficient and durable hydrogen evolution electrocatalyst based on nonmetallic nitrogen doped hexagonal carbon. Sci Rep 4:6843. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Shui J, Wang M, Du F, Dai L (2015) N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci Adv 1:e1400129. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Young J (2017) Non-precious metal catalysts based on carbon nanomaterials for oxygen and hydrogen electrocatalysis. Graduate School of UNIST. Accessed 12 Dec 2018
  42. 42.
    Dubey PK, Sinha ASK, Talapatra S, Koratkar N, Ajayan PM, Srivastava ON (2010) Hydrogen generation by water electrolysis using carbon nanotube anode. Int J Hydrog Energy 35:3945–3950. CrossRefGoogle Scholar
  43. 43.
    Patel CRP, Tripathi P, Vishwakarma AK, Talat M, Soni PK, Yadav TP, Srivastava ON (2018) Enhanced hydrogen generation by water electrolysis employing carbon nano-structure composites. Int J Hydrog Energy 43:3180–3189. CrossRefGoogle Scholar
  44. 44.
    Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG (2006) Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes. Angew Chem Int Ed 45:2533–2537CrossRefGoogle Scholar
  45. 45.
    Feng Y, Zhou G, Wang G, Qu M, Yu Z (2003) Removal of some impurities from carbon nanotubes. Chem Phys Lett 375:645–648CrossRefGoogle Scholar
  46. 46.
    Yang X, Li X, Ma X, Jia L, Zhu L (2013) Carbonaceous impurities greatly impact on the electrochemical capacitance of graphene. RSC Adv 3:6752–6755. CrossRefGoogle Scholar
  47. 47.
    Ambrosi A, Pumera M (2011) Amorphous carbon impurities play an active role in redox processes of carbon nanotubes.
  48. 48.
    Pumera M (2009) The electrochemistry of carbon nanotubes: fundamentals and applications. Chem Eur J 15:4970–4978CrossRefPubMedGoogle Scholar
  49. 49.
    Ambrosi A, Pumera M (2010) Nanographite impurities dominate electrochemistry of carbon nanotubes. Chem Eur J 16:10946–10949. CrossRefPubMedGoogle Scholar
  50. 50.
    Pumera M, Ambrosi A, Chng ELK (2012) Impurities in graphenes and carbon nanotubes and their influence on the redox properties. Chem Sci 3:3347–3355CrossRefGoogle Scholar
  51. 51.
    Susantyoko RA, Karam Z, Alkhoori S, Mustafa I, Wu CH, Almheiri S (2017) A surface-engineered tape-casting fabrication technique toward the commercialisation of freestanding carbon nanotube sheets. J Mater Chem A 5:19255–19266. CrossRefGoogle Scholar
  52. 52.
    Mustafa I, Bamgbopa MO, Alraeesi E, Shao-Horn Y, Sun H, Almheiri S (2017) Insights on the electrochemical activity of porous carbonaceous electrodes in non-aqueous vanadium redox flow batteries. J Electrochem Soc 164:A3673–A3683. CrossRefGoogle Scholar
  53. 53.
    Karam Z, Susantyoko RA, Alhammadi A, et al (2018) Development of surface-engineered tape-casting method for fabricating freestanding carbon nanotube sheets containing Fe2O3 nanoparticles for flexible batteries. Adv Eng Mater n/a-n/a
  54. 54.
    Mustafa I, Al Shehhi A, Al Hammadi A et al (2018) Effects of carbonaceous impurities on the electrochemical activity of multiwalled carbon nanotube electrodes for vanadium redox flow batteries. Carbon 131:47–59. CrossRefGoogle Scholar
  55. 55.
    Susantyoko RA, Parveen F, Mustafa I, Almheiri S (2018) MWCNT/activated-carbon freestanding sheets: a different approach to fabricate flexible electrodes for supercapacitors. Ionics. 25:265–273. CrossRefGoogle Scholar
  56. 56.
    Shah TK, Malecki HC, Basantkumar RR, et al (2014) Carbon nanostructures and methods of making the same. US20140093728 A1Google Scholar
  57. 57.
    Das R, Hamid SBA, Ali ME, Yongzhi SR and W (2015) Carbon nanotubes characterization by X-ray powder diffraction – a review. Curr Nanosci.
  58. 58.
    Shalom M, Gimenez S, Schipper F, Herraiz-Cardona I, Bisquert J, Antonietti M. (2014) Controlled carbon nitride growth on surfaces for hydrogen evolution electrodes.
  59. 59.
    Zhang B, Wang H-H, Su H, Lv LB, Zhao TJ, Ge JM, Wei X, Wang KX, Li XH, Chen JS (2016) Nitrogen-doped graphene microtubes with opened inner voids: highly efficient metal-free electrocatalysts for alkaline hydrogen evolution reaction. Nano Res 9:2606–2615. CrossRefGoogle Scholar
  60. 60.
    Peng Z, Yang S, Jia D, da P, He P, al-Enizi AM, Ding G, Xie X, Zheng G (2016) Homologous metal-free electrocatalysts grown on three-dimensional carbon networks for overall water splitting in acidic and alkaline media. J Mater Chem A 4:12878–12883CrossRefGoogle Scholar
  61. 61.
    Qu K, Zheng Y, Jiao Y, Zhang X, Dai S, Qiao SZ (2017) Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting. Adv Energy Mater 7:1602068CrossRefGoogle Scholar
  62. 62.
    Tian J, Liu Q, Asiri AM, Sun X (2014) Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc 136:7587–7590CrossRefPubMedGoogle Scholar
  63. 63.
    Tilak BV, Rader CG, Rangarajan SK (1977) Techniques for characterizing porous electrodes I : determination of the double layer capacity. J Electrochem Soc 124:1879–1886. CrossRefGoogle Scholar
  64. 64.
    Trasatti S, Petrii OA (1992) Real surface area measurements in electrochemistry. J Electroanal Chem 327:353–376. CrossRefGoogle Scholar
  65. 65.
    Shao L, Tobias G, Salzmann CG, Ballesteros B, Hong SY, Crossley A, Davis BG, Green MLH (2007) Removal of amorphous carbon for the efficient sidewall functionalisation of single-walled carbon nanotubes. Chem Commun 0:5090–5092. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ibrahim Mustafa
    • 1
  • Rahmat Susantyoko
    • 2
  • Aamna Alshehhi
    • 1
  • Mona Bahman
    • 1
  • Arwa Alshareif
    • 1
  • Saif Almheiri
    • 3
  • Faisal Almarzooqi
    • 1
    Email author
  1. 1.Center for Membranes & Advanced Water Technology, Department of Chemical Engineering, Masdar InstituteKhalifa University of Science and TechnologyMasdar CityUnited Arab Emirates
  2. 2.Department of Mechanical Engineering, Masdar InstituteKhalifa University of Science and TechnologyMasdar CityUnited Arab Emirates
  3. 3.Research & Development CenterDubai Electricity and Water Authority (DEWA)DubaiUnited Arab Emirates

Personalised recommendations