, Volume 25, Issue 9, pp 4149–4159 | Cite as

Facile-synthesized amorphous CoCO3 for high-capacity lithium-ion battery anode

  • Tianbiao Zeng
  • Chuhong ZhangEmail author
Original Paper


Transition metal carbonates are high specific capacity and high initial coulombic efficiency anode materials of the lithium-ion batteries (LiBs). Herein, molecular dynamics simulation found the amorphous instead of the crystallized CoCO3 is more favorable for Li-ion storage. Guided by the dynamics simulations results, the amorphous CoCO3 was synthesized by a facile one-step precipitation method and then compounded with reduced graphene oxide (RGO) sheets. The as-synthesized CoCO3/RGO shows one of the best electrochemical performances compared with the recently reported CoCO3-based anodes. CoCO3/RGO delivered a reversible capacity of 881.4 mAh g−1 at 50th cycle under the current density of 100 mA g−1 and 1250.5, 898.7, 718.3 mAh g−1 at 1st, 2nd, and 50th cycles under the current density of 200 mA g−1. This work could provide a rational design and manufacture method of high-performance carbonate-based LiB anodes.


CoCO3 Amorphous Lithium-ion battery Carbonate 



This work was financially supported by the 973 program of Ministry of Science and Technology of the People’s Republic of China (No. 2013CB934700), the National Natural Science Foundation of China (No. 51222305 and 51673123) and the Program for New Century Excellent Talents in University (No. NCET-12-0386). We also thank the Analytical and Testing Center of Sichuan University for providing Materials studio, and we are also grateful to Daichuan Ma for his help of computational simulation.


  1. 1.
    Fan XL, Zhu YJ, Luo C, Suo LM, Lin Y, Gao T, Xu K, Wang CS (2016) Pomegranate-structured conversion-reaction cathode with a built-in Li source for high-energy Li-ion batteries. ACS Nano 10:5567–5577CrossRefGoogle Scholar
  2. 2.
    Nayak PK, Erickson EM, Schipper F, Penki TR, Munichandraiah N, Adelhelm P, Sclar H, Amalraj F, Markovsky B, Aurbach D (2018) Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv Energy Mater 8:1702397CrossRefGoogle Scholar
  3. 3.
    Feng XN, Ouyang M, Liu X, Lu LG, Xia Y, He XM (2018) Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater 10:246–267CrossRefGoogle Scholar
  4. 4.
    Lu Y, Yu L, Lou XW (2018) Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4:972–996CrossRefGoogle Scholar
  5. 5.
    Yin JJ, Ding ZJ, Lei D, Tang LK, Deng JJ, Li BH, He YB (2017) Zn-substituted CoCO3 embedded in carbon nanotubes network as high performance anode for lithium-ion batteries. J Alloys Compd 712:605–612CrossRefGoogle Scholar
  6. 6.
    Ren MM, Yang MZ, Liu WL, Li M, Su LW, Qiao CD, Wu XB, Ma HY (2016) Ultra-small Fe3O4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries. Electrochim Acta 194:219–227CrossRefGoogle Scholar
  7. 7.
    Su LW, Zhong YR, Zhou Z (2013) Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: a case study of hierarchical core-shell Fe3O4@C and Fe@C microspheres. J Mater Chem A 1:15158–15166CrossRefGoogle Scholar
  8. 8.
    Jin RC, Jiang H, Sun YX, Ma YQ, Li HH, Chen G (2016) Fabrication of NiFe2O4/C hollow spheres constructed by mesoporous nanospheres for high-performance lithium-ion batteries. Chem Eng J 303:501–510CrossRefGoogle Scholar
  9. 9.
    Yu L, Guan BY, Xiao W, Wen LX (2015) Formation of yolk-shelled Ni-Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv Energy Mater 5:1500981CrossRefGoogle Scholar
  10. 10.
    Jin RC, Ma YQ, Sun YX, Li HH, Wang QY, Chen G (2017) Manganese cobalt oxide (MnCo2O4) hollow spheres as high capacity anode materials for lithium-ion batteries. Energy Technol 5:293–299CrossRefGoogle Scholar
  11. 11.
    Zheng MB, Tang H, Li LL, Hu Q, Li Z, Xue HG, Pang H (2018) Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci:1700592Google Scholar
  12. 12.
    Lander L, Tarascon JM, Yamada A (2018) Sulfate-based cathode materials for Li and Na-ion batteries. Chem Rec 18:1–16CrossRefGoogle Scholar
  13. 13.
    Tang LB, Xiao B, An CS, Li H, He ZJ, Zheng JC (2018) VPO4@C/graphene microsphere as a potential anode material for lithiumion batteries. Ceram Int 44:14432–14438CrossRefGoogle Scholar
  14. 14.
    Fu WB, Zhao EB, Sun ZF, Ren XL, Magasinski A, Gleb Y (2018) Iron fluoride-carbon nanocomposite nanofibers as free-standing cathodes for high-energy lithium batteries. Adv Funct Mater 28:1801711CrossRefGoogle Scholar
  15. 15.
    Zou RJ, Xu MD, He SA, Han XY, Lin RJ, Cui Z, He GJ, Brett DJL, Guo ZX, Hu JP, Parkin I (2018) Cobalt nickel nitride coated by a thin carbon layer anchoring on nitrogen-doped carbon nanotube anodes for high-performance lithium-ion batteries. J Mater Chem A 6:19853–19862CrossRefGoogle Scholar
  16. 16.
    Zhou XL, Zhong YR, Yang M, Zhang Q, Wei JP, Zhou Z (2015) Co2(OH)2CO3 nanosheets and CoO nanonets with tailored pore sizes as anodes for lithium ion batteries. ACS Appl Mater Interfaces 7:12022–12029CrossRefGoogle Scholar
  17. 17.
    Su LW, Hei JP, Wu XB, Wang LB, Zhou Z (2017) Ultrathin layered hydroxide cobalt acetate nanoplates face-to-face anchored to graphene nanosheets for high-efficiency lithium storage. Adv Funct Mater 27:1605544CrossRefGoogle Scholar
  18. 18.
    Zhong YR, Su LW, Yang M, Wei JP, Zhou Z (2013) Rambutan-like FeCO3 hollow microspheres: facile preparation and superior lithium storage performances. ACS Appl Mater Interfaces 5:11212–11217CrossRefGoogle Scholar
  19. 19.
    Su LW, Zhou Z, Qin X, Tang QW, Wu DH, Shen PW (2013) CoCO3 submicrocube/graphene composites with high lithium storage capability. Nano Energy 2:276–282CrossRefGoogle Scholar
  20. 20.
    Huang GY, Xu SM, Yang Y, Sun HY, Li ZB, Chen Q, Lu SS (2014) Micro-spherical CoCO3 anode for lithium-ion batteries. Mater Lett 131:236–239CrossRefGoogle Scholar
  21. 21.
    Wang LB, Tang WJ, Jing Y, Su LW, Zhou Z (2014) Do transition metal carbonates have greater lithium storage capability than oxides? A case study of monodisperse CoCO3 and CoO microspindles. ACS Appl Mater Interfaces 6:12346–12352CrossRefGoogle Scholar
  22. 22.
    Jiang Y, Hall C, Ning S, Lau DW, Burr PA, Patterson R, Wang DW, Ouyang Z, Lennon A (2018) Evidence for fast lithium-ion diffusion and charge-transfer reactions in amorphous TiOx nanotubes: insights for high-rate electrochemical energy storage. ACS Appl Mater Interfaces 10:42513–42523CrossRefGoogle Scholar
  23. 23.
    kharbachi AE, Hu Y, Yoshida K, Ponniah V, Kim S, Sørby MH, Orimo S, Helmer F, Hauback BC (2018) Lithium ionic conduction in composites of Li(BH4)0.75I0.25 and amorphous 0.75Li2S·0.25P2S5 for battery applications. Electrochim Acta 278:332–339CrossRefGoogle Scholar
  24. 24.
    Du HM, Jiao LF, Wang QH, Huan Q, Guo LJ, Si YH, Wang YJ, Yuan HT (2013) Morphology control of CoCO3 crystals and their conversion to mesoporous Co3O4 for alkaline rechargeable batteries application. CrystEngComm 15(30):6101–6109CrossRefGoogle Scholar
  25. 25.
    Zhao XD, Zhang ZH, Zhang X, Tang B, Xie ZJ, Zhou Z (2018) Computational screening and first-principles investigations of NASICON-type LixM2(PO4)3 as solid electrolytes for Li batteries. J Mater Chem A 6:2625–2631CrossRefGoogle Scholar
  26. 26.
    Sturm DR, Caputo KJ, Liu SY, Danner RP (2018) Diffusivity of solvents in semi-crystalline polyethylene using the Vrentas-Duda free-volume theory. J Polym Eng 38(10):925–931CrossRefGoogle Scholar
  27. 27.
    Zielinski JM, Duda JL (1992) Predicting polymer/solven diffusion coefficients using free-volume theory. AICHE J 38(3):405–415CrossRefGoogle Scholar
  28. 28.
    Paulo FFA, Winchil LCV, Thompson TE (1992) Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry 31:6739–6747CrossRefGoogle Scholar
  29. 29.
    Wu DH, Yang BC, Chen HY, Ruckenstei E (2019) Nitrogenated holey graphene C2N monolayer anodes for lithium- and sodium-ion batteries with high performance. Energy Storage Materials 16:574–580CrossRefGoogle Scholar
  30. 30.
    Liu CJ, Xue FH, Hao H, Yu XH, Xie CJ, Shi MS, Cao GZ, Jung YG, Dong XL (2014) Preparation and electrochemical properties of Fe-Sn (C) nanocomposites as anode for lithium-ion batteries. Electrochim Acta 129:93–99CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Materials Engineering, Polymer Research InstituteSichuan UniversityChengduChina

Personalised recommendations