Advertisement

Ionics

, Volume 25, Issue 9, pp 4171–4177 | Cite as

Layer-structured NbSe2 anode material for sodium-ion and potassium-ion batteries

  • Beibei Xu
  • Xiao Ma
  • Jianliya Tian
  • Fei Zhao
  • Yu Liu
  • Baofeng WangEmail author
  • Haishen YangEmail author
  • Yongyao Xia
Original Paper
  • 141 Downloads

Abstract

Layered compounds with large interlayer spacing enabling ions intercalation are promising anode materials for sodium-ion and potassium-ion batteries. Herein, we prepared the high-purity layer-structured NbSe2 sheets with compatible interlayer spacing (6.30 Å) via a facile solid-state vacuum sintering. The as-prepared NbSe2 was explored as anode materials for sodium and potassium batteries for the first time. The NbSe2 exhibits excellent cycle stability and rate performance for sodium storage, which provides initial reversible capacity of 116.6 mA h g−1 and retention capacity of 98.1 mA h g−1 after 100 cycles at 100 mA g−1. A capacity of 78.6 mA h g−1 was achieved even at a high current density of 4000 mA g−1. The sodium-ion storage mechanism of NbSe2 was primitively discussed in this paper. NbSe2 also demonstrates considerable potassium storage capacity and good rate performance. The results indicate that NbSe2 may be a promising anode for sodium-ion and potassium-ion batteries as a novel anode material.

Keywords

NbSe2 Sodium/potassium-ion batteries Anode Layered material 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No: 21673136) and program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264CrossRefGoogle Scholar
  2. 2.
    Li D, Wang H, Liu HK, Guo Z (2016) A new strategy for achieving a high performance anode for lithium ion batteries-encapsulating germanium nanoparticles in carbon nanoboxes. Adv Energy Mater 6:1501666CrossRefGoogle Scholar
  3. 3.
    Zhang L, Wu HB, Lou XWD (2014) Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv Energy Mater 4:1300958CrossRefGoogle Scholar
  4. 4.
    Liu C, Neale ZG, Cao G (2016) Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today 19:109–123CrossRefGoogle Scholar
  5. 5.
    Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  6. 6.
    Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29CrossRefGoogle Scholar
  7. 7.
    Wenzel S, Hara T, Janek J, Adelhelm P (2011) Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ Sci 4:3342CrossRefGoogle Scholar
  8. 8.
    Luo W, Wan J, Ozdemir B, Bao W, Chen Y, Dai J, Lin H, Xu Y, Gu F, Barone V, Hu L (2015) Potassium ion batteries with graphitic materials. Nano Lett 15:7671–7677CrossRefGoogle Scholar
  9. 9.
    Jian Z, Luo W, Ji X (2015) Carbon electrodes for K-ion batteries. J Am Chem Soc 137:11566–11569CrossRefGoogle Scholar
  10. 10.
    Cui C, Li X, Hu Z, Xu J, Liu H, Ma J (2015) Growth of MoS2@C nanobowls as a lithium-ion battery anode material. RSC Adv 5:92506–92514CrossRefGoogle Scholar
  11. 11.
    Ren X, Zhao Q, McCulloch WD, Wu Y (2017) MoS2 as a long-life host material for potassium ion intercalation. Nano Res 10:1313–1321CrossRefGoogle Scholar
  12. 12.
    Park J, Kim J-S, Park J-W, Nam T-H, Kim K-W, Ahn J-H, Wang G, Ahn H-J (2013) Discharge mechanism of MoS2 for sodium ion battery: electrochemical measurements and characterization. Electrochim Acta 92:427–432CrossRefGoogle Scholar
  13. 13.
    Su D, Dou S, Wang G (2014) WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chem Commun (Camb) 50:4192–4195CrossRefGoogle Scholar
  14. 14.
    Mao M, Cui C, Wu M, Zhang M, Gao T, Fan X, Chen J, Wang T, Ma J, Wang C (2018) Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery. Nano Energy 45:346–352CrossRefGoogle Scholar
  15. 15.
    Wei D, Liang J, Zhu Y, Hu L, Zhang K, Zhang J, Yuan Z, Qian Y (2014) Layer structured α-FeSe: a potential anode material for lithium storage. Electrochem Commun 38:124–127CrossRefGoogle Scholar
  16. 16.
    Xu X, Liu J, Liu J, Ouyang L, Hu R, Wang H, Yang L, Zhu M (2018) A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries. Adv Funct Mater 28:1707573CrossRefGoogle Scholar
  17. 17.
    Zhang F, Xia C, Zhu J, Ahmed B, Liang H, Velusamy DB, Schwingenschlögl U, Alshareef HN (2016) SnSe2 2D anodes for advanced sodium ion batteries. Adv Energy Mater 6:1601188CrossRefGoogle Scholar
  18. 18.
    Qin F, Hu H, Jiang Y, Zhang K, Fang Z, Lai Y, Li J (2018) Mesoporous MoSe2/C composite as anode material for sodium/lithium ion batteries. J Electroanal Chem 823:67–72CrossRefGoogle Scholar
  19. 19.
    Ou X, Xiong X, Zheng F, Yang C, Lin Z, Hu R, Jin C, Chen Y, Liu M (2016) In situ X-ray diffraction characterization of NbS2 nanosheets as the anode material for sodium ion batteries. J Power Sources 325:410–416CrossRefGoogle Scholar
  20. 20.
    Hitz E, Wan J, Patel A, Xu Y, Meshi L, Dai J, Chen Y, Lu A, Davydov AV, Hu L (2016) Electrochemical intercalation of lithium ions into NbSe2 nanosheets. ACS Appl Mater Interfaces 8:11390–11395CrossRefGoogle Scholar
  21. 21.
    Lv X, Wei W, Sun Q, Huang B, Dai Y (2017) A first-principles study of NbSe2 monolayer as anode materials for rechargeable lithium-ion and sodium-ion batteries. J Phys D Appl Phys 50:235501CrossRefGoogle Scholar
  22. 22.
    Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRefGoogle Scholar
  23. 23.
    Chen S, Li H, Tang H, Zhang Y, Yang J, Ji XR, Chen L, Zhang K, Li C (2014) Heterodoped nanoflakes: synthesis and characterization of sulfur-doped NbSe2 nanoflakes. Cryst Res Technol 49:152–158CrossRefGoogle Scholar
  24. 24.
    Tang H, Cao K, Wu Q, Li C, Yang X, Yan X (2011) Synthesis and tribological properties of copper matrix solid self-lubricant composites reinforced with NbSe2 nanoparticles. Cryst Res Technol 46:195–200CrossRefGoogle Scholar
  25. 25.
    Kim KT, Ali G, Chung KY, Yoon CS, Yashiro H, Sun YK, Lu J, Amine K, Myung ST (2014) Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett 14:416–422CrossRefGoogle Scholar
  26. 26.
    Wang F-M, Wang H-Y, Yu M-H, Hsiao Y-J, Tsai Y (2011) Differential pulse effects of solid electrolyte interface formation for improving performance on high-power lithium ion battery. J Power Sources 196:10395–10400CrossRefGoogle Scholar
  27. 27.
    Wang B, Xia Y, Wang G, Zhou Y, Wang H (2017) Core shell MoS2/C nanospheres embedded in foam-like carbon sheets composite with an interconnected macroporous structure as stable and high-capacity anodes for sodium ion batteries. Chem Eng J 309:417–425CrossRefGoogle Scholar
  28. 28.
    Tian J, Wang B, Zhao F, Ma X, Liu Y, Liu HK, Huang Z (2017) Highly active Fe3BO6 as an anode material for sodium-ion batteries. Chem Commun 53:4698–4701CrossRefGoogle Scholar
  29. 29.
    Liu Y, Liu J, Hou M, Fan L, Wang Y, Xia Y (2017) Carbon-coated Li4Ti5O12 nanoparticles with high electrochemical performance as anode material in sodium-ion batteries. J Mater Chem A 5:10902–10908CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric PowerShanghai University of Electric PowerShanghaiPeople’s Republic of China
  2. 2.Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  3. 3.Department of ChemistryFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations