, Volume 25, Issue 9, pp 4425–4436 | Cite as

Water-dispersible graphene–wrapped MnO2 nanospheres and their applications in coin cell supercapacitors

  • Siva Palanisamy
  • Arunkumar Prabhakaran Shyma
  • Surendhiran Srinivasan
  • Naveen kumar Rajendran
  • Rajendran VenkatachalamEmail author
Original Paper


A highly stable and more water-dispersible graphene (WDG) was synthesized using microwave-assisted ball milling technique. The WDG-wrapped MnO2 nanocomposites were prepared for two mass ratios of nanospheres and graphene sheets using reflux method. Comprehensive characterization of the prepared WDG-Mn1 and WDG-Mn2 hybrid nanocomposites was carried out to explore the electrochemical capacitance behaviors. The WDG-Mn1 and WDG-Mn2 electrodes showed capacitance performance of 130 F g−1 at 0.5 A g−1 and 178 F g−1 at 0.5 A g−1, respectively. The WDG-Mn2 electrode revealed enhanced capacitance performance, that is, 84% of its initial capacitance was retained even after repeating the cyclic voltammetry test for 3000 cycles. This study reveals the enhanced capacity performance in WDG-Mn2 nanocomposite hybrid materials for supercapacitors.


Water-dispersible graphene Coin cell Supercapacitor Gel electrolyte Charge–discharge 



The authors acknowledge the support extended by Dr. M. Sathish, Scientist, CSIR-CECRI, Karaikudi, in carrying out the battery cell test.

Supplementary material

11581_2019_3004_MOESM1_ESM.docx (111 kb)
ESM 1 (DOCX 111 kb)


  1. 1.
    Ma L, Liu R, Niu H, Zhao M, Huang Y (2016) Flexible and freestanding electrode based on polypyrrole/graphene/bacterial cellulose paper for supercapacitor. Compos Sci Technol 137:87–93CrossRefGoogle Scholar
  2. 2.
    Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132:7472–7477CrossRefGoogle Scholar
  3. 3.
    Chen H, Yu F, Wang G, Chen L, Dai B, Peng S (2018) Nitrogen and sulfur self-doped activated carbon directly derived from elm flower for high-performance supercapacitors. ACS Omega 3:4724–4732CrossRefGoogle Scholar
  4. 4.
    Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sources 196:5990–5996CrossRefGoogle Scholar
  5. 5.
    Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J Phys Chem B 109:20207–20214CrossRefGoogle Scholar
  6. 6.
    Siva P, Prabu P, Selvam M, Karthik S, Rajendran V (2017) Electrocatalytic conversion of carbon dioxide to urea on nano FeTiO3 surface. Ionics 23:1871–1878CrossRefGoogle Scholar
  7. 7.
    Srither SR, Karthik A, Arunmetha A, Murugesan D, Rajendran V (2016) Electrochemical supercapacitor studies of porous MnO2 nanoparticles in neutral electrolytes. Mater Chem Phys 183:375–382CrossRefGoogle Scholar
  8. 8.
    Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12CrossRefGoogle Scholar
  9. 9.
    Chen S, Zhu J, Wu X, Han Q (2010) Graphene oxide−MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830CrossRefGoogle Scholar
  10. 10.
    Chen Y, Zhang X, Zhang D, Yu P, Ma Y (2011) High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 49:573–580CrossRefGoogle Scholar
  11. 11.
    Novoselov KS, Geim AK, Morosov SV, Jiang D, Zhang Y, Dubunos SV, Firosov AA (2004) Electric field effect in atomically thin carbon films. SCIRP 306:666–669Google Scholar
  12. 12.
    Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRefGoogle Scholar
  13. 13.
    Tan YB, Lee JM (2013) Graphene for supercapacitor applications. RSC 1:14814–14843Google Scholar
  14. 14.
    Jian-Gan W, Feiyu K, Bingqing W (2015) Engineering of MnO2-based nanocomposites for high performance supercapacitors. Prog Mater Sci 74:51–124CrossRefGoogle Scholar
  15. 15.
    Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitor. Nano Energy 2:213–234CrossRefGoogle Scholar
  16. 16.
    Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417CrossRefGoogle Scholar
  17. 17.
    Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682CrossRefGoogle Scholar
  18. 18.
    Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene/MnO2 nanocomposites as supercapacitor electrodes. Carbon 48:3825–3833CrossRefGoogle Scholar
  19. 19.
    Xu M, Kong L, Zhou W, Li H (2007) Hydrothermal synthesis and pesudocapacitance properties of alfa MnO2 hollow spheres and hollow urchins. J Phys Chem C 111:19141–19147CrossRefGoogle Scholar
  20. 20.
    Liu R, Lee SB (2008) MnO2 / poly (3,4 ethylenedioxythiphene) coaxial nanowires by one step coelectrodeposition foe electrochemical energy storage. J Am Chem Soc 130:2942–2943CrossRefGoogle Scholar
  21. 21.
    Yu C, Zhang L, Shi J, Shao J, Gao J, Yan D (2008) A simple template free strategy to synthesise nanoporous manganese and nickel oxides with nanopore size distribution and their electrochemical properties. Adv Funct Mater 18:1544–1554CrossRefGoogle Scholar
  22. 22.
    Yang S, Feng X, Ivanovici S, Mullen K (2010) Fabrication of graphene encapsulated oxide nanoparticles; towards high performance anode materials for lithium storage. Angew Chem Int Ed 49:8408–8411CrossRefGoogle Scholar
  23. 23.
    Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Graphene wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313CrossRefGoogle Scholar
  24. 24.
    Wang H, Cui LF, Yang Y, Sanchez CH, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4 graphene hybrid as high capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980CrossRefGoogle Scholar
  25. 25.
    Li S, Liyin H, Shuanlong D, Jianning Z, Xiujuan Q (2018) Plumage-like MnO2@NiCo2O4 core-shell architectures for high-efficiency energy storage: the synergistic effect of ultralong MnO2 “scaffold” and ultrathin NiCo2O4 “fluff”. IONICS 24:3227–3235CrossRefGoogle Scholar
  26. 26.
    Mengya F, Guowei Z, Qinghua D, Li S, Zhipeng M, Xiujuan Q, Guangjie S (2017) Co3O4@MnO2 core shell arrays on nickel foam with excellent electrochemical performance for aqueous asymmetric supercapacitor. Ionics 23:1637–1643CrossRefGoogle Scholar
  27. 27.
    Jia L, Shi Y, Zhang Q, Xu X (2018) Green synthesis of ultrafine methyl-cellulose-derived porous carbon/MnO2 nanowires for asymmetric supercapacitors and flexible pattern stamping. Appl Surf Sci 462:923–931CrossRefGoogle Scholar
  28. 28.
    Zhou Y, Ma L, Gan M, Ye M, Li X, Zhai Y, Yan F, Cao F (2018) Monodisperse MnO2@NiCo2O4 core/shell nanospheres with highly opened structures as electrode materials for good-performance supercapacitors. Appl Surf Sci 444:1–9CrossRefGoogle Scholar
  29. 29.
    Chen Q, Chen J, Zhou Y, Song C, Tian Q, Xu J, Wong CP (2018) Enhancing pseudocapacitive kinetics of nanostructured MnO2 through anchoring onto biomass-derived porous carbon. Appl Surf Sci 440:1027–1036CrossRefGoogle Scholar
  30. 30.
    Liu T, Jiang C, You W, Yu J (2017) Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance. J Mater Chem A 5:8635–8643CrossRefGoogle Scholar
  31. 31.
    Shude L, Kwan SH, Kwun NH (2015) 1D hierarchical MnCo2O4 nanowire@MnO2 sheet core-shell arrays on graphite paper as superior electrodes for asymmetric supercapacitors. Chemnanomat 1:8Google Scholar
  32. 32.
    Xiaoyi H, Tao P, Qiuhong Y, Rongjie L, Xianming L, Yingge Z, Yange W, Yan G, Jang KK, Yongsong L (2017) Facile synthesis of holothurian-like gamma-MnS/carbon nanotube nanocomposites for flexible all-solid-state supercapacitors. ChemNanoMat 3:551–559CrossRefGoogle Scholar
  33. 33.
    Muhammad SB, Yongchao H, Weitao QHY, Hongbing J, Yexiang T (2017) Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater Today 20:425–451CrossRefGoogle Scholar
  34. 34.
    Lamberti A, Gigot A, Bianco A, Fontana M, Castellino M, Tresso M, Pirri CF (2016) Self-assembly of graphene aerogel on copper wire for wearable fiber-shaped supercapacitors. Carbon 105:649–654CrossRefGoogle Scholar
  35. 35.
    Yaqiong C, Zhangpeng L, Jinqing W, Zunli M, Shengrong Y (2019) Construction of hierarchical holey graphene/MnO2 composites as potential electrode materials for supercapacitors. J Alloys Compd 775:1206–1212CrossRefGoogle Scholar
  36. 36.
    Laurie W (2016) Self-assembled supercapacitor wires for e-textiles. Mater Today 19:422–422Google Scholar
  37. 37.
    Paul H, Mohanta D (2011) Hydrazine reduced exfoliated graphene/graphene oxide layers and magnetoconductance measurements of Ge-supported graphene layers. Appl Phys A Mater Sci Process 103:395–402CrossRefGoogle Scholar
  38. 38.
    Zhai D, Li B, Du H, Gao G, Gan L, He Y, Yang Q, Kang F (2012) The preparation of graphene decorated with manganese dioxide nanoparticles by electrostatic adsorption for use in supercapacitors. Carbon 50(14):5034–5043CrossRefGoogle Scholar
  39. 39.
    Fei H, Saha N, Kazantseva N, Moucka R, Cheng Q, Saha PA (2017) Highly flexible supercapacitor based on MnO2/RGO nanosheets and bacterial cellulose-filled gel electrolyte. Materials 10(11):1251CrossRefGoogle Scholar
  40. 40.
    Zhu J, He J (2012) Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors. ACS Appl Mater Interfaces 4:1770–1776CrossRefGoogle Scholar
  41. 41.
    Green AA, Hersam MC (2010) Emerging methods for producing monodisperse graphene dispersions. J Phys Chem Lett 1(2):544–549CrossRefGoogle Scholar
  42. 42.
    Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 48:3825–3833CrossRefGoogle Scholar
  43. 43.
    Zhong W, Wencai R, Dawei W, Feng L, Bilu L, Cheng HM (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842CrossRefGoogle Scholar
  44. 44.
    Selvam M, Sakthipandi K, Suriyaprabh R, Saminathan K, Rajendran V (2013) Synthesis and characterization of electrochemically-reduced graphene. Bull Mater Sci 36:1315–1321CrossRefGoogle Scholar
  45. 45.
    Saminathan K, Mayilvel M, Selvam M, Srithar SR, Rajendran V, Kaler KVIS (2015) Water soluble graphene as electrolyte additive in magnesium air battery system. J Power Sources 276:32–38CrossRefGoogle Scholar
  46. 46.
    Ankamwar B, Surti F (2012) Water soluble graphene synthesis. Chem Sci Trans 3:500–507CrossRefGoogle Scholar
  47. 47.
    Kumar BMP, Karikkat S, Krishna RH, Udayasankara TH, Sivaprasad KH, Nagabhushana BM (2014) Synthesis, characterisation of Nano MnO2 and its adsorption characteristics over an Azo dye. RRJMS 2:27–31Google Scholar
  48. 48.
    Gaini Z, Lijun R, LingJuan D, Jianfang W, Liping K, Zong-Huai L (2014) Graphene–MnO2 nanocomposite for high-performance asymmetrical electrochemical capacitor. Mater Res Bull 49:577–583CrossRefGoogle Scholar
  49. 49.
    Yong Q, Shunbao L, Fenglei G (2011) Preparation of MnO2/graphene composite as electrode material for supercapacitors. J Mater Sci 46:3517–3522CrossRefGoogle Scholar
  50. 50.
    Chengzhou Z, Shaojun G, Youxing F, Lei H, Erkang W, Shaojun D (2011) One-step electrochemical approach to the synthesis of graphene/MnO2 nanowall hybrids. Nano Res 4:648–657CrossRefGoogle Scholar
  51. 51.
    Yu P, Zhang X, Chen Y, Ma Y, Qi Z (2009) Preparation and pseudo-capacitance of birnessite-type MnO2 nanostructures via microwave-assisted emulsion method. Mater Chem Phys 118:303–307CrossRefGoogle Scholar
  52. 52.
    Kaviyarasu K, Manikandan E, Maaza M (2015) Synthesis of CdS flower-like hierarchical microspheres as electrode material for electrochemical performance. J Alloys Compd 648:559–563CrossRefGoogle Scholar
  53. 53.
    Khamlich S, Abdullaeva S, Kennedy JV, Maaza M (2017) High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite. Appl Surf Sci 405:329–336CrossRefGoogle Scholar
  54. 54.
    Ismail E, Khamlich S, Dhlamini M, Maaza M (2016) Green biosynthesis of ruthenium oxide nanoparticles on nickel foam as electrode material for supercapacitor applications. RSC Adv 6(90):86843–86850CrossRefGoogle Scholar
  55. 55.
    Sone BT, Fuku XG, Maaza M (2016) Physical & electrochemical properties of green synthesized bunsenite NiO nanoparticles via Callistemon viminalis’ extract. Int J Electrochem Sci 11(10):8204–8220CrossRefGoogle Scholar
  56. 56.
    Sheng C, Junwu Z, Xiaodong W, Qiaofeng H, Xin W (2010) Graphene oxide -MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830CrossRefGoogle Scholar
  57. 57.
    Khamlich S, Nuru ZY, Bello A, Fabiane M, Dangbegnon JK, Manyala N, Maaza M (2015) Pulsed laser deposited Cr2O3 nanostructured thin film on graphene as anode material for lithium-ion batteries. J Alloy Compd 637:219–225. CrossRefGoogle Scholar
  58. 58.
    Assumpta CN, Daniel O, Kenneth IO, Rose UO, Chawki A, Andreas R, Malik M, Federico R, Fabian IE (2016) Facile synthesis of nanosheet-like CuO film and its potential application as a high-performance pseudocapacitor electrode. Electrochim Acta 198:220–230CrossRefGoogle Scholar
  59. 59.
    Genene TM, Elhadi AAA, Bidini AT, Kaviyarasu K, Ishaq A, Maaza M (2016) Growth and characterization of V2O5 thin film on conductive electrode. J Microsc 00:1–8Google Scholar
  60. 60.
    Anass D, Jacques L, Claude S, Serge B, Mohammed AL, Jean-Claude M, Malik M (2000) Optical properties of Ag–TiO2 nano cermet films prepared by co sputtering and multilayer deposition techniques. Appl Opt 39:13Google Scholar
  61. 61.
    Zebib YN, Arendse CJ, Nemutudi R, Nemraoui O, Maaza M (2012) Pt–Al2O3 nano coatings for high temperature concentrated solar thermal power applications. J Phys B 407:1634–1637CrossRefGoogle Scholar
  62. 62.
    Becerril HA, Mao J, Liu ZF, Stoltenberg RM, Bao Z, Chen YS (2008) Evaluation of solution processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Siva Palanisamy
    • 1
  • Arunkumar Prabhakaran Shyma
    • 1
  • Surendhiran Srinivasan
    • 1
  • Naveen kumar Rajendran
    • 1
  • Rajendran Venkatachalam
    • 1
    • 2
    Email author
  1. 1.Centre for Nano Science and TechnologyK.S. Rangasamy College of TechnologyTiruchengodeIndia
  2. 2.Centre for Nano Science and TechnologyDr. N G P Arts and Science CollegeCoimbatoreIndia

Personalised recommendations