Advertisement

Ionics

, Volume 25, Issue 9, pp 4469–4479 | Cite as

DNA-functionalized dye-loaded carbon dots: ultrabright FRET platform for ratiometric detection of Hg(II) in serum samples and cell microenvironment

  • Somayeh Hamd-Ghadareh
  • Abdollah SalimiEmail author
Original Paper
  • 54 Downloads

Abstract

The dual-emission carbon dots (CDs) are used to fabricate an ultra-sensitive and highly selective fluorescence resonance energy transfer (FRET) aptameric-sensor for the quantitation of Hg(II). The designed strategy worked based on hybridization between T-rich ssDNA(S1) immobilized on CDs and AuNPs modified with complementary aptamer (AuNPs-S2) and Rhodamine B (RB) as an extra internal reference. Under optimized experimental conditions, the intensity ratio of I580/I668 shows a good linear relationship with the Hg(II) concentration in concentration range of 1.0 × 10−18 to 50.0 × 10−5 M with detection limit of 5 × 10−19 M. The proposed FRET aptasensor showed high selectivity for Hg(II) determination even in the presence of other metal ions with higher concentration as high as 1000 times. Furthermore, the RB-CDs probe was demonstrated to be efficient for MDA-MB 231 cell imaging. The bifunctional signaling probe exhibits impressive simplicity, convenience, and low detection time and the proposed sensor can be applied in biomedicine study, food safety, and environmental protection.

Graphical abstract

Keywords

Ratiometric Dual emission carbon dots Hg(II) Aptasensor Cellular imaging Fluorescence resonance energy transfer (FRET) Rhodamine B 

Notes

Acknowledgments

This work was supported with the Research Office of University of Kurdistan and Iranian Nanotechnology Initiative. We thank Dr. Fardin Fathi and Farzad Soleimani (Kurdistan Medical University for taking cellar fluorescence imaging.

Supplementary material

11581_2019_2999_MOESM1_ESM.doc (490 kb)
ESM 1 (DOC 490 kb)

References

  1. 1.
    Pytharopouloua S, Kournoutoua GG, Leotsinidisb M, Georgiouc CD, Kalpaxis DL (2013) Dysfunctions of the translational machinery in digestive glands of mussels exposed to mercury ions. Aquat Toxicol 134:23–33CrossRefGoogle Scholar
  2. 2.
    Zalups RK (2000) Molecular interactions with mercury in the kidney. Pharmacol Rev 52:113–143Google Scholar
  3. 3.
    Monikha FA, Karami O, Hosseini M, Karami N, Bastami A, Ghasemi AF (2013) The effect of primary producers of experimental aquatic food chains on mercury and PCB153 biomagnification. Ecotox. Environ. Safe. 94:112–115CrossRefGoogle Scholar
  4. 4.
    Gómez-Ariza JL, Lorenzo F, García-Barrera T (2005) Comparative study of atomic fluorescence spectroscopy and inductively coupled plasma mass spectrometry for mercury and arsenic multispeciation. Anal Bioanal Chem 382:485–492CrossRefGoogle Scholar
  5. 5.
    Fong BMW, Siu TS, Lee JSK, Tam S (2007) Determination of mercury in whole blood and urine by inductively coupled plasma mass spectrometry. J Anal Toxicol 31:281–287CrossRefGoogle Scholar
  6. 6.
    Manna B, Raj CR (2018) Nanostructured sulfur-doped porous reduced graphene oxide for the ultrasensitive electrochemical detection and efficient removal of hg(II). ACS Sustain Chem Eng 6:6175–6182CrossRefGoogle Scholar
  7. 7.
    Amiri S, Navaee A, Salimi A, Ahmadi R (2017) Zeptomolar detection of Hg2+ based on label-free electrochemical aptasensor: one step closer to the dream of single atom detection. Electrochem Commun 78:21–25CrossRefGoogle Scholar
  8. 8.
    Zhou G, Chang J, Pu H, Shi K, Mao S, Sui X, Ren R, Cui S, Chen J (2016) Ultrasensitive mercury ion detection using DNA-functionalized molybdenum disulfide Nanosheet/gold nanoparticle hybrid field-effect transistor device. ACS Sens. 1:295–302CrossRefGoogle Scholar
  9. 9.
    Cui X, Zhu L, Wu J, Hou Y, Wang P, Wang Z, Yang M (2015) A fluorescent biosensor based on carbon dots-labeled Oligodeoxyribonucleotide and graphene oxide for mercury (II) detection. Biosens Bioelectron 63:506–512CrossRefGoogle Scholar
  10. 10.
    Peng D, Zhang L, Liang RP, Qiu JD (2018) Rapid detection of mercury ions based on nitrogen-doped graphene quantum dots accelerating formation of manganese porphyrin. ACS Sens 3:1040–1047CrossRefGoogle Scholar
  11. 11.
    Kong L, Wang J, Zheng G, Liu J (2011) A highly sensitive protocol (FRET/SIMNSEF) for the determination of mercury ions: a unity of fluorescence quenching of graphene and enhancement of nanogold. Chem Commun 47:10389–10391CrossRefGoogle Scholar
  12. 12.
    Amiri S, Ahmadi R, Salimi A, Navee A, Hamd-Qaddare S, Amini MA (2018; Advance Article) Ultrasensetive and highly selective FRET aptasensor for Hg2+ measuring in fish samples using carbon dots/AuNPs as donor/acceptor platform. New J Chem 42:16027–16035CrossRefGoogle Scholar
  13. 13.
    Gu W, Pei X, Cheng Y, Zhang C, Zhang J, Yan Y, Ding C, Xian Y (2017) Black phosphorus quantum dots as the Ratiometric fluorescence probe for trace mercury ion detection based on inner filter effect. ACS Sens. 2:576–582CrossRefGoogle Scholar
  14. 14.
    Tang X, Wang YS, Xue JH, Zhou B, Cao JX, Chen SH, Li MH, Wang XF, Xue F, Zhu YF (2015) Huang Y Q. a novel strategy for dual-channel detection of metallothioneins and mercury based on the conformational switching of functional chimera aptamer. J Pharm Biomed Anal 107:258–264CrossRefGoogle Scholar
  15. 15.
    Chen SH, Wang YS, Chen YS, Tang X, Cao JX, Li MH, Wang XF, Zhu YF, Huang YQ (2015) Dual-channel detection of metallothioneins and mercury based on a mercury-mediated aptamer beacon using thymidine–mercury–thymidine complex as a quencher. Spectrochim Acta A: Mol Spectrosc 151:315–321CrossRefGoogle Scholar
  16. 16.
    Huang YQ, Yin JC, Wang YS, Xiao XL, Zhou B, Xue JH, Tang X, Wang XF, Zhou B, Xue JH, Tang X, Chen SH (2016) Streptavidin and gold nanoparticles-based dual signal amplification for sensitive magnetoelastic sensing of mercury using a specific aptamer probe. Sensors Actuators B Chem 235:507–517CrossRefGoogle Scholar
  17. 17.
    Lu X, Zhang J, Xie YN, Zhang X, Jiang X, Hou X, Wu P (2018) Ratiometric phosphorescent probe for thallium in serum, water, and soil samples based on long-lived, spectrally resolved, Mn-doped ZnSe quantum dots and carbon dots. Anal Chem 90:2939–2945CrossRefGoogle Scholar
  18. 18.
    Ying ZM, Wu Z, Tu B, Tan W, Jiang JH (2017) Genetically encoded fluorescent RNA sensor for Ratiometric imaging of MicroRNA in living tumor cells. JACS. 139:9779–9782CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Li S, Zhao Z (2016) Using Nanoliposomes to construct a FRET-based Ratiometric fluorescent probe for sensing intracellular pH values. Anal Chem 88:12380–12385CrossRefGoogle Scholar
  20. 20.
    Luxami V, Verma M, Rani R, Paula K, Kumar S (2012) FRET-based ratiometric detection of Hg2+ and biothiols using naphthalimide–rhodamine dyads. Org Biomol Chem 10:8076CrossRefGoogle Scholar
  21. 21.
    Song W, Duan W, Liu Y, Ye Z, Chen Y, Chen H, Qi S, Wu J, Liu D, Xiao L, Ren C, Chen X (2017) Ratiometric detection of intracellular lysine and pH with one-pot synthesized dual emissive carbon dots. Anal Chem 89:13626–13633CrossRefGoogle Scholar
  22. 22.
    Wang Y, Shan D, Wu G, Wang H, Ru F, Zhang X, Li L, Qian Y, Lu X (2018) A novel "dual-potential" Ratiometric Electrochemiluminescence DNA sensor based on enhancing and quenching effect by G-quadruplex / hemin and au-Luminol bifunctional nanoparticles. Biosens Bioelectron 106:64–70CrossRefGoogle Scholar
  23. 23.
    Ji R, Liu A, Shen S, Cao X, Li X, Ge Y (2017) An indolizine–rhodamine based FRET fluorescence sensor for highly sensitive and selective detection of Hg2+ in living cells. RSC Adv 7:40829–40833CrossRefGoogle Scholar
  24. 24.
    Teradal NL, Jelinek R (2017) Carbon Nanomaterials in Biological Studies and Biomedicine. Adv Healthc Mater 17:1700574CrossRefGoogle Scholar
  25. 25.
    Yang L, Deng W, Cheng C, Tan Y, Xie Q, Yao S (2018) Fluorescent immunoassay for the detection of pathogenic Bacteria at the single-cell level using carbon dots encapsulated breakable Organosilica Nanocapsule as labels. ACS Appl Mater Interfaces 10:3441–3448CrossRefGoogle Scholar
  26. 26.
    Hamd-Ghadareh S, Salimi A, Parsa S, Fathi F (2018) Simultaneous biosensing of CA125 and CA15-3 tumor markers and imaging of OVCAR-3 andMCF-7 cells lines via bi-color FRET phenomenon using dual blue-green luminescent carbon dots with single excitation wavelength. Int J Biol Macromol 118:617–628CrossRefGoogle Scholar
  27. 27.
    Hamd-Ghadareh S, Salimi A, Fathi F, Bahrami S (2017) An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imagingand sensing. Biosens Bioelectron 96:308–316CrossRefGoogle Scholar
  28. 28.
    Hamd-Qaddare S, Salimi A (2017) Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing platform: a novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar level. Biosens Bioelectron 89:773–780CrossRefGoogle Scholar
  29. 29.
    Khramtsov P, Kropaneva M, Kalashnikova T, Bochkova M, Timganova V, Zamorina S, Rayev M (2018) Highly stable conjugates of carbon nanoparticles with DNA aptamers. Langmuir. 34:10321–10332CrossRefGoogle Scholar
  30. 30.
    Gao W, Song H, Wang X, Liu X, Pang X, Zhou Y, Gao B, Peng X (2018) Carbon dots with red emission for sensing of Pt2+, Au3+ and Pd2+ and their bio-applications in vitro and in vivo. ACS Appl Mater Interfaces 10:1147–1154CrossRefGoogle Scholar
  31. 31.
    Wang H, Sun X, Zhang T, Chen X, Zhu J, Xu W, Bai X, Dong B, Cui H, Song H (2018) Photoluminescence enhancement of carbon dots induced by hybrids of photonic crystals and gold–silver alloy nanoparticles. J Mater Chem C 6:147–152CrossRefGoogle Scholar
  32. 32.
    Xiong Y, Schneider J, Reckmeier CJ, Huang HP, Kasákb A, Rogach L (2017) Carbonization conditions influence the emission characteristics and the stability against Photobleaching of nitrogen doped carbon dots. Nanoscale. 9:11730–11738CrossRefGoogle Scholar
  33. 33.
    Hu S, Meng X, Tian F, Yang W, Li N, Xue C, Yang J, Chang Q (2017) Dual photoluminescence centers from inorganic-salt-functionalized carbon dots for ratiometric pH sensing. J Mater Chem C 5:9849–9853CrossRefGoogle Scholar
  34. 34.
    Zhi B, Gallagher MJM, Frank BP, Lyons TY, Qiu TA, Da J, Mensch AC, Hamers RJ, Rosenzweig Z, Fairbrother DH, Haynes CL (2018) Investigation of phosphorous doping effects on polymeric carbon dots: fluorescence, Photostability, and environmental impact. Carbon. 129:438–449CrossRefGoogle Scholar
  35. 35.
    Martindale BC, Hutton GAM, Caputo CA, Prant S, Godin R, Durrant JR, Reisner E (2017) Enhancing light absorption and charge transfer efficiency in carbon dots through graphitization and Core nitrogen doping. Angew Chem 56:6459–6463CrossRefGoogle Scholar
  36. 36.
    Zhou Y, Sharma S, Peng Z, Leblanc R (2017) Polymers in carbon dots: a review. Polymers. 9:67CrossRefGoogle Scholar
  37. 37.
    Chen BB, Liu ML, Zhan L, Li C, Huang MC (2018) Terbium (III) modified fluorescent carbon dots for highly selective and sensitive Ratiometry of stringent. Anal Chem 90:4003–4009CrossRefGoogle Scholar
  38. 38.
    Mohan R, Drbohlavova J, Hubalek J (2018) Dual band emission in carbon dots. Chem Phys Lett 692:196–201CrossRefGoogle Scholar
  39. 39.
    Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of au colloid monolayers. Anal Chem 67:735–743CrossRefGoogle Scholar
  40. 40.
    Song Y, Jiang T, Nguyen VL, Sparrman T, Björn E, Skyllberg U (2018) Thermodynamics of hg(II) bonding to thiol groups in Suwannee River natural organic matter resolved by competitive ligand exchange, hg LIII-edge EXAFS and 1H NMR spectroscopy. Environ Sci Technol 52:8292–8301CrossRefGoogle Scholar
  41. 41.
    Liu L, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1:246–252CrossRefGoogle Scholar
  42. 42.
    Zheng W, Shan N, Yu L, Wang X (2008) UV–visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes Pigments 77:153–157CrossRefGoogle Scholar
  43. 43.
    Teymourian H, Salimi A, Khezrian S (2017) Development of a new label-free, indicator-free strategy toward ultrasensitive electrochemical DNA biosensing based on Fe3O4 nanoparticles/reduced graphene oxide composite. Electroanalysis 19:409–414CrossRefGoogle Scholar
  44. 44.
    Noorbakhsh A, Salimi A (2011) Development of DNA electrochemical biosensor based on immobilization of ssDNA on the surface of nickel oxide nanoparticles modified glassy carbon Electrode. Biosens Bioelectron 30:188–196CrossRefGoogle Scholar
  45. 45.
    Niu X, Ding Y, Chen C, Zhao H, Lan M (2011) A novel electrochemical biosensor for Hg2+ determination based on Hg2+-induced DNA hybridization. Sensors Actuators B Chem 58:383–387CrossRefGoogle Scholar
  46. 46.
    Orriach-Fernández FJ, Medina-Castillo AL, Díaz-Gómez JE, Muňnoz de la Peňa A, Fernández-Sánchez JF, Fernández-Gutiérrez A (2014) A sensing microfibre mat produced by electrospinning for the turn-on luminescence determination of Hg2+ in water samples. Sensors Actuators B Chem 195:8–14CrossRefGoogle Scholar
  47. 47.
    Zhou Y, Dong H, Li L, Li M, Xiao K, Xu M (2014) Sens. Selective and sensitive colorimetric sensor of mercury (II) based on gold nanoparticles and 4-mercaptophenylboronic acid. Sensors Actuators B Chem 196:106–111CrossRefGoogle Scholar
  48. 48.
    Ren W, Zhang Y, Chen HG, Gao ZF, Li NB, Luo HQ (2016) Ultrasensitive label-free resonance Rayleigh scattering Aptasensor for Hg2+ using Hg2+-triggered exonuclease III-assisted target recycling and growth of G-wires for signal amplification. Anal Chem 88:1385–1390CrossRefGoogle Scholar
  49. 49.
    Li T, Liang G, Li X (2013) Chemiluminescence assay for the sensitive detection of iodide based on extracting Hg2+ from a T–Hg2+–T complex. Analyst 138:1898–1902CrossRefGoogle Scholar
  50. 50.
    Zhuo B, Li Y, Zhang A, Lu F, Chen Y, Gao W (2014) An electrochemiluminescence biosensor for sensitive and selective detection of Hg2+ based on π–π interaction between nucleotides and ferrocene–graphene nanosheets. J Mater Chem B 2:3263–3270CrossRefGoogle Scholar
  51. 51.
    Gao W, Zhang A, Chen Y, Chen Z, Chen Y, Lu F, Chen Z (2013) A novel probe density controllable electrochemiluminescence biosensor for ultra-sensitive detection of Hg2+ based on DNA hybridization optimization with gold nanoparticles array patterned self-assembly platform. Biosens Bioelectron 49:139–145CrossRefGoogle Scholar
  52. 52.
    Babamiri B, Salimi A, Hallaj R (2018) Switchable electrochemiluminescence aptasensor coupled with resonance energy transfer for selective attomolar detection of Hg2+ via CdTe@CdS/dendrimer probe and au nanoparticle quencher. Biosens Bioelectron 102:328–335CrossRefGoogle Scholar
  53. 53.
    Amao Y, Komori T (2004) Bio-photovoltaic conversion device using chlorine-e6 derived from chlorophyll from Spirulina adsorbed on a nanocrystalline TiO2 film electrode. Biosens Bioelectron 19:843–847CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of KurdistanSanandajIran
  2. 2.Reserach Center for NanotechnologyUniversity of KurdistanSanandajIran

Personalised recommendations